matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeWinkel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Winkel
Winkel < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel: tipp
Status: (Frage) beantwortet Status 
Datum: 21:25 Fr 28.12.2007
Autor: tim_tempel

Aufgabe
Gegeben seien die drei Vektoren
[mm] \vec{a} = \vektor{2 \\ -1 \\ 1}[/mm]  [mm] \vec{b} = \vektor{-2 \\ -1 \\ 1}[/mm]   [mm] \vec{c} = \vektor{1 \\ 0 \\ 1}[/mm]
Berechnen Sie den Winkel zwischen den deiden Ebenen, die durch [mm] \vec{a}[/mm] und [mm] \vec{b}[/mm] bzw. durch [mm] \vec{a}[/mm] und [mm] \vec{c}[/mm] aufgespannt werden.

den winkel zwischen zwei vektoren wird ja durch  
[mm] cos(x, y) = \bruch{\vec{x}}{|x|}\*\bruch{\vec{y}}{|y|}[/mm] berechnet.
jetzt habe ich mir eine kleine skizze gemacht und die stimmt mit meiner rechnung überhaupt nicht überein - die zwei vektoren [mm] \vec{a}[/mm] und [mm] \vec{b}[/mm] müssten laut skizze einen winkel von 90Grad zueinander haben (geschätzt).
meine rechenansatz sieht dann wie folgt aus:
[mm] \vec{|a|} = \wurzel{2^2 + (-1)^2 + 1^2} = \wurzel{6}[/mm]

[mm] \vec{|b|} = \wurzel{-2^2 + (-1)^2 + 1^2} = \wurzel{6}[/mm]

[mm] \vec{a}\*\vec{b} = \vektor{2 \\ -1\\ 1}\*\vektor{-2 \\ -1\\ 1} = (2\*-2) + (-1\*-1) + (1\*1) = -2[/mm]

[mm] cos(a, b) = \bruch{-2}{\wurzel{6}\ * \wurzel{6}} = \bruch{-2}{6}[/mm]
hier stimmt doch etwas nicht, zumindest stimmt es mit meiner skizze nicht überein?


        
Bezug
Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Fr 28.12.2007
Autor: Event_Horizon

Hallo!

Diese beiden Vektoren sind NICHT rechtwinklig, sonst wäre das Skalarprodukt 0.

Der Winkel von 70,5° ist völlig OK. Wie kommst du denn darauf, daß die beiden Vektoren orthogonal sind? Du kannst aus einer Skizze, die 3D-Vektoren nur unzureichend auf dem 2D-Papier darstellt, nur sehr schlecht Winkel ablesen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]