matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraWie ist die Aufgabe zu verstehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Wie ist die Aufgabe zu verstehen
Wie ist die Aufgabe zu verstehen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wie ist die Aufgabe zu verstehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 08.06.2004
Autor: baddi

Hallo zusammen,
ich hab hier eine Aufgabe bei der ich 90 % der Schreibweisen verstehe.
Also...

Aufgabe 7.3:
Sei V = C[0,1]) die Menge der stetigen Funktionen f: [0,1] -> [mm] $\IR$. [/mm]
Prüfen Sie, ob die folgenden Abbildungn o: V->V lineare Abbildungen sind.
a) (of)(x) = [mm] $f(x)^2$ [/mm]
a) (of)(x) = [mm] $f(x^2)$ [/mm]
c) o(f(x)) = f(x) für x<0
und 0
o(f(x)) = 0 für x >= 0.

Ich weiss: [0,1] ist ein Interval. Also auch eine Menge, eben aller Zahlen 0 <= x <= 1.
Stetige Funktionen sind funktionen die keinen Sprung aufweisen (kann man ohne Absetzen zeichnen).
Lineare Abbildungen weisen zwei eigenschaften auf:
x, y sind Vektoren.
f(x) + f(y)=f(x) + f(y)
r*f(x) =f(r*x)

Aber was bedeutet den eigentlich, z.B.:
a) (of)(x) = [mm] $f(x)^2$ [/mm]
o ist eine Abbildung und die wird mit der Funktion f multipliziert ?
und das ist dann wieder eine Funktion deren Eingabewert x ist ?
und diese Funktion errechnet dann mit diesem x einen Wert
[mm] $f(x)^2$ [/mm]
Eigenartig.
Naja gut. Kann man ja mal so definieren.
Aber mich verwirrt das ein wenig.
Wäre schön, wenn mir jemand etwas Licht in die Geschichte bringen könnte.
Danke.



        
Bezug
Wie ist die Aufgabe zu verstehen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Di 08.06.2004
Autor: Julius

Hallo Sebastian!

Hier Aufgabe wird

hier!

schon diskutiert.

Du siehst ja, was hier los ist. Da ich heute mehr oder weniger der einzige bin, der Aufgaben beantwortet, kann ich dir vermutlich heute nicht mehr weiterhelfen.

Nur, wenn ich euch gegenseitig mehr helft, kann das Forum funktionieren. Wir paar Tutoren alleine können auch nicht den ganzen Tag die Übungsaufgaben für euch lösen.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]