matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitWiderspruchsbeweis Stetigkeit?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Widerspruchsbeweis Stetigkeit?
Widerspruchsbeweis Stetigkeit? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Widerspruchsbeweis Stetigkeit?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 So 28.09.2014
Autor: bquadrat

Aufgabe
Die Frunktion [mm] f:[0,1]\to\IR [/mm] sei stetig und es sei f(0)=f(1)=:a
Behauptung: [mm] \exists{c}\in[0,\bruch{1}{2}]:f(c)=f(c+\bruch{1}{2}) [/mm]

Meine Vermutung liegt darin, dass ich annehme, dass es ein derartiges c nicht gibt und dies dann irgendwie widerlege, indem ich zeige, dass dann die Funktion nicht stetig ist oder dass die Aussage f(0)=f(1) dann nicht stimmen kann. Aber ich weiß nicht, wie ich das zum Widerspruch führen könnte... Kann mir da eventuell mal jemand weiterhelfen?

Dank im Voraus

[mm] b^{2} [/mm]

        
Bezug
Widerspruchsbeweis Stetigkeit?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 28.09.2014
Autor: steppenhahn

Hallo bquadrat,

> Die Frunktion [mm]f:[0,1]\to\IR[/mm] sei stetig und es sei
> f(0)=f(1)=:a
>  Behauptung:
> [mm]\exists{c}\in[0,\bruch{1}{2}]:f(c)=f(c+\bruch{1}{2})[/mm]


>  Meine Vermutung liegt darin, dass ich annehme, dass es ein
> derartiges c nicht gibt und dies dann irgendwie widerlege,
> indem ich zeige, dass dann die Funktion nicht stetig ist
> oder dass die Aussage f(0)=f(1) dann nicht stimmen kann.

Ein Widerspruchsbeweis ist hier nicht nötig (natürlich kannst du aus dem normalen Beweis, den ich dir gleich vorschlage, auch einen Widerspruchsbeweis machen, aber das ist ein Umweg).

Verwende den Zwischenwertsatz für stetige Funktionen und wende ihn auf

[mm] $g:[0,\frac{1}{2}] \to \IR, [/mm] g(x) := f(x) - f(x + [mm] \frac{1}{2})$ [/mm]

an. Überlege dazu:

1) Welche Gleichheit g(c) = ... musst du erhalten, damit die Aussage aus der Aufgabenstellung erreicht wird?
2) Welche Werte musst du in g(x) einsetzen, um die Voraussetzung f(0) = f(1) nutzen zu können und den Zwischenwertsatz anwenden zu können, um g(c) = ...  zu erhalten?

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]