matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungWert von t bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Wert von t bestimmen
Wert von t bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wert von t bestimmen: Idee,Tipp
Status: (Frage) beantwortet Status 
Datum: 16:29 Do 01.02.2007
Autor: MonaMoe

Aufgabe
K ist für t>0 der Graph von f mit f(x)= [mm] -x^{2}+tx [/mm]
K und die Gerade g mit y=x-t begrenzen eine Fläche in Abhängigkeit von t. Die x-Achse teilt die Fläche in 2 Teile.
Untersuchen Sie,ob es einen Wert von t gibt, so dass beide Flächen gleichen Inhalt haben.

Hallo, ich steh mal wieder vor einem großen Fragezeichen! Also mit meinem tollen Taschenrechner konnte ich das Schaubild zeichnen, doch ich weiß nicht wie ich anfangen soll! Soll ich den Flächeninhalt der gesamten Fläche ausrechnen?
Oder soll ich beide Teile einzeln? Und dann? Was nützt mir das? Wie kann ich dieses t bestimmen?
Bitte helft mir weiter, danke im Vorraus
Mona

        
Bezug
Wert von t bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Do 01.02.2007
Autor: leduart

Hallo Mona
1.Erstmal den Schnittpkt von Gerade und Parabel berechnen.
2. Wenn du den hast, sieht es schon einfacher aus. Zeichnung fuer beliebiges t
3. flaeche unterhalb x-achse ausrechnen A1(t)
4. flaeche oberhalb x-achse ausrechnen A2(t)
5. kann man t so waehlen, dass A1(t)=A2(t)
6. FERTIG
Gruss leduart


Bezug
                
Bezug
Wert von t bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:03 Do 01.02.2007
Autor: MonaMoe

Hallo, danke, aber ich scheiter schon bei den schnittpunkten:
Es heißt doch: [mm] 0=x^{2}+tx+x-t [/mm] Ich komm nicht drauf.Kann ich das tx und x irgendwie zusammenfassen?Sonst kann ich das gar nicht in die Mitternachtsformel einsetzen.

Bezug
                        
Bezug
Wert von t bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:09 Do 01.02.2007
Autor: leduart

Hallo Mona
> Hallo, danke, aber ich scheiter schon bei den
> schnittpunkten:
> Es heißt doch: [mm]0=x^{2}+tx+x-t[/mm]

Hier hast du nen Fehler:
[mm]0=x^{2}-tx+x-t[/mm]
Dann folgt:[mm]0=x^{2}+(1-t)*x -t[/mm]
Rezept: immer alles was bei x steht x ausklammern!
Gruss leduart

Bezug
                                
Bezug
Wert von t bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Do 01.02.2007
Autor: MonaMoe

Danke! Hab ich das dann richtig, wenn für [mm] x_{1}= [/mm] t und [mm] x_{2}= [/mm] -1 herraus kommt?

Bezug
                                        
Bezug
Wert von t bestimmen: richtig
Status: (Antwort) fertig Status 
Datum: 17:41 Do 01.02.2007
Autor: leduart

Hallo Mona
Richtig, aber x2=-1 interessiert dich nicht!
rechne noch f(x1) aus! dann siest du wie einfach es wird.
Gruss leduart

Bezug
                                                
Bezug
Wert von t bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 01.02.2007
Autor: MonaMoe

Hallo,
ich komm wieder nicht weiter. Also ich hab das erste Integral gebildet:
[mm] \integral_{0}^{t}{f(x) dx} [/mm] um die Fläche oberhalb der x-achse zu errechnen und da kommt das raus:
A1= [mm] -\bruch{t^{3}}{3} +\bruch{t^{2}}{2} [/mm]
Anschließend hab ich die Fläche unter der X-Achse berrechnen wollen, da hab ich zwei Integrale gebildet:
A2.1= [mm] -\integral_{-1}^{0}{f(x)-g(x) dx}. [/mm]
Da kommt raus: A2.1= [mm] \bruch{3t-1}{6} [/mm] Das Minus muss doch vor dem Integral stehen,weil wenn ich mir das Schaubild anschaue, muss ich doch von g(x), f(x) abziehen.Und weil es doch lauten muss f(x)-g(x) hab ich mit dem Minus vor dem Integral das Vorzeichen gewechselt. Stimmt das?Ist das richtig?
Und dann hab ich noch die Fläche von 0 bis t ausgerechnet, also: [mm] -\integral_{0}^{t}{g(x) dx}. [/mm] Da kommt raus: A2.2= [mm] \bruch{1}{2} t^{2}. [/mm]
Dann hab ich A2.1 und A2.2 addiert, das ist doch dann die Fläche unter der x-Achse, also: A2= [mm] \bruch{1}{2} t^{2}+\bruch{3t-1}{6} [/mm]
Nach meiner Theorie, hätte ich jetzt beide Teile der Fläche ausgerechnet :-)

So,das hab ich jetzt gemacht, aber ich denk mal, dass ich alles umsonst gemacht hab, weils eh falsch ist.Oder?



Bezug
                                                        
Bezug
Wert von t bestimmen: Leichtsinnsfehler
Status: (Antwort) fertig Status 
Datum: 20:42 Do 01.02.2007
Autor: leduart

Hallo Mona
Ich glaub, du machst einiges zuuu schnell und dadurch Leichtsinnsfehler!

> Hallo,
>  ich komm wieder nicht weiter. Also ich hab das erste
> Integral gebildet:
> [mm]\integral_{0}^{t}{f(x) dx}[/mm] um die Fläche oberhalb der
> x-achse zu errechnen und da kommt das raus:
> A1= [mm]-\bruch{t^{3}}{3} +\bruch{t^{2}}{2}[/mm]

1. Fehle, Int=[mm]-\bruch{x^{3}}{3} +t*\bruch{x^{2}}{2}=-\bruch{t^{3}}{3} +\bruch{t^{3}}{2}=bruch{t^{3}}{6}[/mm]

> Anschließend hab ich die Fläche unter der X-Achse
> berrechnen wollen, da hab ich zwei Integrale gebildet:
>  A2.1= [mm]-\integral_{-1}^{0}{f(x)-g(x) dx}.[/mm]
> Da kommt raus: A2.1= [mm]\bruch{3t-1}{6}[/mm] Das Minus muss doch
> vor dem Integral stehen,weil wenn ich mir das Schaubild
> anschaue, muss ich doch von g(x), f(x) abziehen.

g(x) liegt doch unterhalb von f also eigentlich f-g, aber da die flaeche unterhalb der x-achse liegt ist sie neg. also der pos. flaecheninhalt mit deiner Formel richtig.
>Und weil es

> doch lauten muss f(x)-g(x) hab ich mit dem Minus vor dem
> Integral das Vorzeichen gewechselt. Stimmt das?Ist das
> richtig?

soweit ja, wenn du den pos. Flaecheninhalt willst. einfacher ist es nix zu denken und einfach den Betrag zu nehmen!
Aber wieder ein Fehler: ich hab A2.1= [mm]\bruch{3t+1}{6}[/mm] raus.

>  Und dann hab ich noch die Fläche von 0 bis t ausgerechnet,
> also: [mm]-\integral_{0}^{t}{g(x) dx}.[/mm] Da kommt raus: A2.2=
> [mm]\bruch{1}{2} t^{2}.[/mm]

richtig!

> Dann hab ich A2.1 und A2.2 addiert, das ist doch dann die
> Fläche unter der x-Achse, also: A2= [mm]\bruch{1}{2} t^{2}+\bruch{3t-1}{6}[/mm]
>  
> Nach meiner Theorie, hätte ich jetzt beide Teile der Fläche
> ausgerechnet :-)

bis auf die Fehler Ja!
jetzt: A1=A2 und sehen, obs ein t >0 gibt  
du kriegst ne Gl. dritten Grades! Aber du musst ja das t nicht rauskriegen, sondern nur begruenden obs eins gibt!

Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]