matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenWendepkt auf Winkelhalbierende
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Wendepkt auf Winkelhalbierende
Wendepkt auf Winkelhalbierende < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wendepkt auf Winkelhalbierende: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 16.12.2006
Autor: cruelbabe

Aufgabe
Gegeben sei die Funktion
[mm]f(x)=x-sin(2x) x \in [-\pi;\pi][/mm]

[...]
4. Zeige, dass alle Wendepunkt auf der Winkelhalbierenden y=x liegen.

So und nun zu meinem Problem. Ich sehe, dass sie draufliegen, habe es gezeichnet. Aber mir ist nicht klar wieso.
Und wenn ich die Wendepunkte ausrechne bekomm ich nur 0 ruas, dabei müssen doch auch welche bei [mm] \pi; -\pi; \bruch {1}{2} \pi; -\bruch {1}{2} \pi[/mm] sein oder?

Ich verstehe irgendiwe die Aufgabe nicht ganz...
Sorry, dass ich schon wieder nerve...
Liebe Grüße
Anna


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wendepkt auf Winkelhalbierende: Funktionswerte
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 16.12.2006
Autor: Loddar

Hallo Anna!


Berechne zu den verschiedenen Wendestellen [mm] $x_{W,k}$ [/mm] die zugehörigen Funktionswerte [mm] $y_{W,k} [/mm] \ = \ [mm] f(x_{W,k})$ [/mm] .
Was fällt Dir auf?


Gruß
Loddar


Bezug
                
Bezug
Wendepkt auf Winkelhalbierende: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Sa 16.12.2006
Autor: cruelbabe

Das ist ja mien Probelm, ich habe nur 0/0 als Wendepunkt heraus.

Wie komm ich denn auf die restlichen die mir mein GTR anzeigt?

Bezug
                        
Bezug
Wendepkt auf Winkelhalbierende: Sinus periodisch
Status: (Antwort) fertig Status 
Datum: 17:21 Sa 16.12.2006
Autor: Loddar

Hallo cruelbabe!


Wie lautet denn Deine 2. Ableitung $f''(x)_$ ?


Dann darfst Du ja nicht vergessen, dass die [mm] $\sin$-Funktion [/mm] periodisch ist.


Gruß
Loddar


Bezug
                                
Bezug
Wendepkt auf Winkelhalbierende: rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:25 Sa 16.12.2006
Autor: cruelbabe

ich versteh grade überhaupt nichts entschuldigung.

ich möchte doch bloß wissen WIE ich die anderen nullstellen berechen. und das die kurve periodisch ist weiß ich, aber ja im abstand von 2[mm]\pi[/mm] und das ist ja mein intervall....

ich steh auf dem schlauch...

Bezug
                                        
Bezug
Wendepkt auf Winkelhalbierende: Wendestellen
Status: (Antwort) fertig Status 
Datum: 09:43 So 17.12.2006
Autor: Loddar

Hallo Anna!


Durch Nullsetzen der 2. Ableitung $f''(x) \ =\ [mm] 4*\sin(2x)$ [/mm] erhalten wir die Gleichung:

[mm] $\sin(2x) [/mm] \ = \ 0$    [mm] $\gdw$ [/mm]   $2*x \ = \ [mm] k*\pi$ [/mm]  mit  [mm] $k\in\IZ$ [/mm]

Oder auch:  [mm] $\blue{2}*x [/mm] \ = \ ...; [mm] -2\pi; [/mm] \ [mm] -\pi; [/mm] \ 0; \ [mm] +\pi; [/mm] \ [mm] +2\pi; [/mm] \ ...$

Und durch Teilen dieser Gleichung durch [mm] $\blue{2}$ [/mm] erhalten wir die gewünschten Kandidaten im Intervall [mm] $\left[ \ -\pi \ ; \ +\pi \ \right]$ [/mm] :

[mm] $x_{W,1...5} [/mm] \ = \ [mm] -\pi [/mm] \ ; \ [mm] -\bruch{\pi}{2} [/mm] \ ; \ 0 \ ; \ [mm] +\bruch{\pi}{2} [/mm] \ ; \ [mm] +\pi$ [/mm]


Gruß
Loddar


Bezug
                                                
Bezug
Wendepkt auf Winkelhalbierende: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:24 So 15.04.2007
Autor: cruelbabe

Ich habe gerade gesehen, das ich ganz vergessen habe mich zu bedanken, damals, mache gared alle diese Aufgaben noch einmal und dabie ist mir diese Seite wieder eingefallen.

Hat mir wirklich geholfen! Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]