matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenWende,extrem-punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Ganzrationale Funktionen" - Wende,extrem-punkte
Wende,extrem-punkte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wende,extrem-punkte: Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 19:31 So 07.06.2009
Autor: damn1337

Hallo, ich habe ein Problem bei folgender Aufgabe:

Bestimme die Wendepunkte und die Extrema von [mm] f(x)=1/3x^2-2x^2+5 [/mm]
Gib die Gleichung der Wendetangente an und Skizzieren sie mit ihrer Hilfe den Graphen von f


Mein Ansatz für die Extrema:

F'(x)=0
[mm] 0=x^2-4x+5 [/mm]

da kommt sowohl bei meinem Taschenrechner, als auch bei einem Rechner im internet
x1=2 - î
und
x2=2 + î
hier die erste Frage: Was bedeutet das  î??

Wenn ich mit 2 Weiterrechne, kommt für

f''(2)=0 raus --> Kriterium greift nicht

und für
f'(1)=2
und
f'(3)=2
Das hieße ja, dass diese Kriterium auch nicht greift, oder?! Was ist hier zu tun?

Jetzt die Wendepunkte:

f''(x)=0
0=2x-4
4=2x
2=x

f'''(2)=2>0--> r/l WP bei [mm] (2/-\bruch{1}{3} [/mm]

stimmt das?

Jetzt die Wendetangente. Hier weiß ich, dass diese y=mx+b sein muss.
m kann ich errechnen über f'(2)=m, also m=-1
Dann weiß ich, dass y=-1x+b ist, hier komme ich aber irgendwie nicht weiter, stehe aufm Schlauch.

Ich würde mich über eure Hilfe freuen.

        
Bezug
Wende,extrem-punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 07.06.2009
Autor: steppenhahn

Hallo!

> Hallo, ich habe ein Problem bei folgender Aufgabe:
>  
> Bestimme die Wendepunkte und die Extrema von
> [mm]f(x)=1/3x^2-2x^2+5[/mm]

Wie lautet die Funktion?
So:

[mm] $f(x)=\bruch{1}{3}*x^2-2x^2+5$ [/mm]

oder so:

[mm] $f(x)=\bruch{1}{3*x^{2}}-2x^2+5$ [/mm]

>  Gib die Gleichung der Wendetangente an und Skizzieren sie
> mit ihrer Hilfe den Graphen von f
>  
>
> Mein Ansatz für die Extrema:
>
> F'(x)=0
>  [mm]0=x^2-4x+5[/mm]

Du hast leider falsch abgeleitet. Die "5" fällt beim Ableiten weg, weil es bloß eine Konstante bzw. Zahl ist. Inwiefern der Rest richtig ist, kann man erst entscheiden, wenn man weiß wie die Funktion f(x) aussah (siehe obige Frage).
Das "i" steht am Einfachsten gesagt dafür, dass die quadratische Gleichung keine Lösungen in den reellen Zahlen hat. Um die Lösungen trotzdem auszudrücken, benutzt man das "i". In der Schule heißt eine Lösung mit "i" aber, dass es keine ist ;-)

Viele Grüße, Stefan.

Bezug
                
Bezug
Wende,extrem-punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 So 07.06.2009
Autor: damn1337

Hallo.

Die Funktion lautet $ [mm] f(x)=\bruch{1}{3}\cdot{}x^3-2x^2+5 [/mm] $.
ui, falsch Abgeleitet. Stimmt, danke!!

Also nochmal: Extrema:
f'(x)=0
x1=4
x2=0

f''(4)=4>0 --> minimum bei (4/-5,66)
f''(0)=-2<0-->maximum bei (0/-5,66)


Die Berechnung der Wendepunkte bleibt ja die gleiche wie vorher. Jetzt bitte ich euch mal dieses Ergebnis nachzuschauen und dann nochmal bie der Wendetangente zu helfen.


edit: Die Wendetangente lässt sich doch über t(x)=f'(x0)*(x-x0)+f(x0) berechnen, oder? Das wäre in diesem Fall t(x)=4x+7,66

Bezug
                        
Bezug
Wende,extrem-punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 So 07.06.2009
Autor: Steffi21

Hallo,

korrekt, an der Stelle [mm] x_1=4 [/mm] liegt Minimum, an der Stelle [mm] x_2=0 [/mm] liegt Maximum,
überprüfe bitte dein f(0)=..

der Wendepunkt liegt an der Stelle x=2, f'(2)=-4 du hast schon den Anstieg deiner Wendetangente, du hast einen Vorzeichenfehler, [mm] n\approx7,66, [/mm] besser [mm] n=\bruch{23}{3} [/mm]

[mm] y_t=-4x+\bruch{23}{3} [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]