matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOptikWellenlösung - k
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Optik" - Wellenlösung - k
Wellenlösung - k < Optik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellenlösung - k: Seltsame variable
Status: (Frage) beantwortet Status 
Datum: 00:45 So 31.05.2009
Autor: KGB-Spion

Aufgabe
Laut einer Formel gilt: [mm] E_{i}(\vec{x},t) [/mm] = [mm] f_{i} (\vec{n}x \pm [/mm] ct) als sog. Wellenlösung.

Wenn man den Term umformt, so wird man feststellen, dass da so eine "HNF"-Ebenengleichung drinne steckt.

OK --> Laut Herrn Maxwell gilt : [mm] \vec{n} \vec{E} [/mm] = 0 , woraus man die Ausbreitungsrichtung der Welle erkennen vermag.


Nun meine Frage:

Ich will nun wissen, wie sich [mm] f_{i} [/mm] selber verhält! Das aber geht so: E = [mm] E_{0} \vec{e_{x}} [/mm] cos (k(z-ct)+fi) ==> Und nun kommts: Ich hab keine Ahnung, was das k mathematisch bedeuten soll- ich meine wozu ? [mm] \vec{n} \vec{x} [/mm] = z , und damit wäre doch alles erledigt ! Warum muss ich noch ein [mm] \vec{k} [/mm] bzw. k einfügen ? Was soll der denn beschreiben ?

Das, was ich dann bekomme ist E=Eecos(kz-wt + fi) ... UND ? Was bringt mir das "k" nun ?

Kann mir das bitte jemand kurz kommentieren ? Ich brauche echt eine Idee. .. . Wiki sagt mir, dass [mm] \vec{k} [/mm] die Ausbreitungsrichtung besagt, aber was soll dann das [mm] \vec{n} \vec{x} [/mm] ? und das [mm] \vec{n}? [/mm]

LG,
Denis

        
Bezug
Wellenlösung - k: Antwort
Status: (Antwort) fertig Status 
Datum: 01:33 So 31.05.2009
Autor: leduart

Hallo
1, z ist doch wohl physikalisch ne Laenge,  was sin etwa cos(3m)? 2. wo steckt in deiner Gleichung denn die Wellenlaenge?
[mm] k=2\pi/\lambda [/mm] so wie [mm] \omega=2\pi/T [/mm]
Sieh dir doch mal die Welle als Momentaufnahme bei festem t an.
Was ne HNF ist weiss ich nicht.
eine fkt von z ist auch a*z und cosa*z ne fkt von nx-ct ist auch a*(nx+ct) mit z. Bsp [mm] a=2\pi/lambda [/mm] damits auch dimensionsmaesig Sinn macht.
Gruss leduart


Bezug
                
Bezug
Wellenlösung - k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:19 Di 23.06.2009
Autor: KGB-Spion

Dankeschön :-) Bin erst jetzt wieder in Deutschland und habs nun auch kapiert :-9

BESTEN DANK!

Bezug
                
Bezug
Wellenlösung - k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:55 Di 23.06.2009
Autor: Franz1


>  Was ne HNF ist weiss ich nicht.

Klingt nach HESSEscher Normalform.

mfG F

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Optik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]