matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikWellengleichung andere Eichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - Wellengleichung andere Eichung
Wellengleichung andere Eichung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung andere Eichung: nicht Lorenz-Eichung
Status: (Frage) beantwortet Status 
Datum: 13:07 Fr 19.08.2011
Autor: tedd

Aufgabe
Was passiert mit der Wellengleichung für [mm] \vec{A} [/mm] und [mm] \phi, [/mm] wenn man anders als mit der Lorenz-Eichung eicht? Breiten sich [mm] \vec{E} [/mm] und [mm] \vec{B} [/mm] dann noch als Wellen aus?

Hi!

Bin mir noch nicht so ganz im klaren ob ich die Aufgabe richtig verstehe...
Mein Ansatz wäre da ich sonst nur noch die Coulomb-Eichung kenne, bei der [mm] $\nabla \vec{A} [/mm] = 0$ gilt, diese mal anstatt der Lorenz-Eichung zu verwenden...


Es gilt das Gaußsche Gesetz:

[mm] \vec{\nabla} \vec{E} [/mm] = [mm] \frac{\rho}{\varepsilon} [/mm]

und aus dem Faradayschen Induktionsgesetz folgt:

[mm] \vec{E}=-\vec{\nabla}\phi-\frac{\partial\vec{A}}{\pratial t} [/mm]

und somit:

[mm] -\nabla^{2}\phi-\frac{\partial}{\partial t} \vec{\nabla}\vec{A}=\frac{\rho}{\varepsilon} [/mm]


aus dem amperschen Gesetz folgt:

[mm] \vec{\nabla}\times\vec{B}=\mu\left(\vec{j}+\varepsilon\frac{\partial\vec{E}}{\partial t}\right) [/mm]

...

[mm] \vec{\nabla}(\vec{\nabla}\vec{A})-\nabla^{2}\vec{A}-\mu\varepsilon\frac{\partial}{\partial t}\left(-\vec{\nabla}\phi-\frac{\partial\vec{A}}{\partial t}\right)=\mu\vec{j} [/mm]

jetzte hängt es ein bisschen...
Also wenn (nach Coulomb-Eichung) [mm] \vec{\nabla{A}} [/mm] = 0 gilt dann passiert folgendes:

[mm] -\nabla^{2}\phi-\frac{\partial}{\partial t} \underbrace{\vec{\nabla}\vec{A}}_{=0}=\frac{\rho}{\varepsilon} [/mm]

[mm] \Rightarrow -\nabla^{2}\phi=\frac{\rho}{\varepsilon} [/mm]

und

[mm] \vec{\nabla}(\underbrace{\vec{\nabla}\vec{A}}_{=0})-\nabla^{2}\vec{A}-\mu\varepsilon\frac{\partial}{\partial t}\left(-\vec{\nabla}\phi-\frac{\partial\vec{A}}{\partial t}\right)=\mu\vec{j} [/mm]

[mm] \Rightarrow -\nabla^{2}\vec{A}-\mu\varepsilon\frac{\partial}{\partial t}\left(-\vec{\nabla}\phi-\frac{\partial\vec{A}}{\partial t}\right)=\mu\vec{j} [/mm]

genau genommen wäre in der letzten Gleichung das [mm] \nabla^2\vec{A} [/mm] doch auch =0 oder?

Was gibt es jetzt noch zu tun? Kann man jetzt schon sehen ob sich E und B Wellenförmmig ausbreiten?

Keine Ahnung :(

Danke schonmal im voraus und Gruß
tedd

        
Bezug
Wellengleichung andere Eichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 20.08.2011
Autor: rainerS

Hallo!

Weder E noch B ändern sich, wenn du eine andere Eichung wählst. Drücke E und B durch A und [mm] $\Phi$ [/mm] aus und führe eine allgemeine Eichtransformation durch: die zusätzlichen Terme fallen weg.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]