matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenWellengleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Wellengleichung
Wellengleichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellengleichung: Skalarprodukt / Ableitung
Status: (Frage) beantwortet Status 
Datum: 14:14 Do 17.05.2012
Autor: EvelynSnowley2311

Aufgabe
sei v [mm] \in \IR^n [/mm] und f: [mm] \IR \to \IR [/mm] eine zweimal stetige differenzierbare Funktion.  Zeige, dass F : [mm] \IR^n [/mm] x [mm] \IR \to \IR [/mm] def. durch F(x,t)  := f(<v,x> - ||v||t) eine Lösung der Wellengleichung

[mm] F_{tt} [/mm] - [mm] \Delta [/mm] F = 0
ist.


huhu,

also erstmal hab ich versucht nach t abzuleiten:

[mm] F_{tt} [/mm] muss man ja zweimal nach t ableiten dann:

fliegt dabei nicht alles weg:

ich mein wenn ich <v,x> also [mm] v_1 \* x_1 [/mm] + .......+  [mm] v_n \* x_n [/mm] nach t ableite, ist das doch 0 und wenn ich ||v|| [mm] \* [/mm] t zweimal nach t ableite ist das doch auchg 0 oder?


[mm] \Delta [/mm] F:

[mm] \summe_{i=1}^{n} \bruch{\partial^2 F}{\partial^2 x_i} [/mm] (x,t)

müsste doch eig auch 0 sein oder damit die Gleichung aufgeht?

ich komm da auf sowas wie

[mm] \bruch{\partial F}{\partial x_i} [/mm] (x,t) = ( [mm] \summe_{i=1}^{n} v_i [/mm] - 0 )

und dies dann nochmal abgeleitet is dann auch 0 oder?
ich find das ist irgendwie zu nullig....


Lg,

Eve


        
Bezug
Wellengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Do 17.05.2012
Autor: MathePower

Hallo EvelynSnowley2311,


> sei v [mm]\in \IR^n[/mm] und f: [mm]\IR \to \IR[/mm] eine zweimal stetige
> differenzierbare Funktion.  Zeige, dass F : [mm]\IR^n[/mm] x [mm]\IR \to \IR[/mm]
> def. durch F(x,t)  := f(<v,x> - ||v||t) eine Lösung der
> Wellengleichung
>
> [mm]F_{tt}[/mm] - [mm]\Delta[/mm] F = 0
>  ist.
>  
> huhu,
>  
> also erstmal hab ich versucht nach t abzuleiten:
>  
> [mm]F_{tt}[/mm] muss man ja zweimal nach t ableiten dann:
>  
> fliegt dabei nicht alles weg:
>  
> ich mein wenn ich <v,x> also [mm]v_1 \* x_1[/mm] + .......+  [mm]v_n \* x_n[/mm]
> nach t ableite, ist das doch 0 und wenn ich ||v|| [mm]\*[/mm] t
> zweimal nach t ableite ist das doch auchg 0 oder?
>  


Für sich genommen ist das richtig.

Hier musst Du die []verallgemeinerte Kettenregel benutzen.

Betrachte dazu zunächst

[mm]G\left( \ u\left(x,t\right) \ \right):=F\left(x,t\right)[/mm]

mit  [mm]u\left(x,t\right)= - ||v||t[/mm]

Dann ist zu zeigen, daß die Gleichung

[mm]G_{tt} - \Delta G = 0[/mm]

erfüllt wird.


>
> [mm]\Delta[/mm] F:
>
> [mm]\summe_{i=1}^{n} \bruch{\partial^2 F}{\partial^2 x_i}[/mm]
> (x,t)
>  
> müsste doch eig auch 0 sein oder damit die Gleichung
> aufgeht?
>  
> ich komm da auf sowas wie
>  
> [mm]\bruch{\partial F}{\partial x_i}[/mm] (x,t) = ( [mm]\summe_{i=1}^{n} v_i[/mm]
> - 0 )
>  
> und dies dann nochmal abgeleitet is dann auch 0 oder?
>  ich find das ist irgendwie zu nullig....
>  
>
> Lg,
>  
> Eve

>


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]