Weingartenabbildung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
eine Verständnisfrage zur Weingartenabbildung habe ich bzw. ich brauche beim Lernen einfach ein konkretes Beispiel, das mir verdeutlicht, was iche iegntlich machen muss, wenn ich in einer KLausur die Aufgabe bekomme, ich solle doch bitte die Weingartenabbildung bzw. die Gaußabbildung ausrechnen.
Nach meiner Vorlesung ist die Wiengartenabbildung definiert als [mm] $-d_{p}N$, [/mm] wobei $N$ die Gaußabbildung ist.
Wie berechne ich die Weingartenabbildung zum Beispeil vom Einheutszylinder, also von [mm] $S^{1} \times \IR$ [/mm] ?
Ich scheitere leider kläglich und bräuchte eine möglichst kleinschrittige Erklärung. Vielen lieben Dank bereits im Voraus dafür.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:52 Do 03.05.2007 | Autor: | Hund |
Hallo,
ich mach das so:
gegeben: parameterisiertes Flächenstück f, berechne Weingartenabbildung
1. Berechne die partiellen Ableitungen von f nach [mm] u_{1} [/mm] und [mm] u_{2}, [/mm] wenn das deine Parameter sind.
2. Berechne das Kreuzprodukt der Ableitungen und teile das durch die Norm davon, das ist die Gauß-Abbildung v.
3. Berechne Funktionalmatrix Dv von v.
4. Berechne Funktionalmatrix Df und invertiere zu [mm] Df^{-1}.
[/mm]
5. Setzten in die Definition ein:
[mm] L_{u}=-Dv(u)*(Df(u))^{-1}.
[/mm]
Das ist dann die Weingartenabbildung.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|
|
Hallo Hund,
vielen lieben Dank für Deine Antwort.
Bin jetzt gerade etwas verwirrt: wie berechne ich denn $Dv$? Kannst Du mir vielleicht bei der Aufgabe mit dem Zylinder weiterhelfen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:10 Fr 04.05.2007 | Autor: | Hund |
Hallo,
also nehmen wir zum Beispiel den Zylinder, als Kreuzprodukt von dem Kreis und IR. Wenn ich mich jetzt nicht vertue können wir das wie folgt parameterisieren: f(u,v)=(cos(u),sin(u),v). Dann musst du einfach die Schritte befolgen, also partiell ableiten und dann alles richtig zusammensetzten. Dv ist die Funktionalmatrix von v, die bestimmst du indem du v partiell ableitest, da die Spalten der Funktionalmatrix die partiellen Ableitungen sind. Versuch das mal auszurechnen und schreib mal was du rauskriegst, ich werd das auch mal durchrechnen.
Ich hoffe, es hat dir geholfen.
Gruß
Hund
|
|
|
|