matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieWegzusammenhang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Wegzusammenhang
Wegzusammenhang < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegzusammenhang: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:22 Sa 26.05.2012
Autor: kullinarisch

Aufgabe
Sei X ein topologischer Raum, und sei [mm] (M_k)_{k\in\IN} [/mm] eine Familie von Teilmengen von X mit der Eigenschaft [mm] M_k\cap M_{k+1}\not=\emptyset [/mm] für alle [mm] k\in\IN. [/mm] Zeige:

Ist jedes [mm] M_k [/mm] wegzusammenhängend, so auch [mm] \bigcup_{k\in\IN}^{}M_k [/mm]

Hallo zusammen. Wenn ich [mm] x, y \in\bigcup_{k\in\IN}^{}M_k [/mm] beliebig wähle, reicht es doch, wenn ich festlege, dass [mm] x\in M_i [/mm] und [mm] y\in M_{i+1} [/mm] und ich dann zeige, dass [mm] M_i \cup M_{i+1} [/mm] für ein [mm] i\in\IN [/mm] wegzusammenhängend ist. Also ein Punkt an dem man "O.B.d.A" schreiben darf, oder? Ich nehme mal an ja und mache dann so weiter:

Nach Vor. ist [mm] M_i\cap M_{i+1}\not=\emptyset [/mm] also gibt es ein [mm] z\in M_i\cap M_{i+1}. [/mm]

Da beide Mengen wegzusammenhängend sind gibt es 2 stetige Abbildungen:

[mm] \delta_1: [a_1, a_2]\to [/mm] X [mm] \delta_1(a_1)=x, \delta_1(a_2)=z [/mm] in [mm] M_i [/mm]

[mm] \delta_2: [a_2, a_3]\to [/mm] X [mm] \delta_2(a_2)=z, \delta_2(a_3)=y [/mm] in [mm] M_{i+1} [/mm]

Dann ist die Abbildung:

[mm] \alpha: [a_1, a_2]\cup[a_2, a_3]\to [/mm] X mit [mm] \alpha(p)=:\begin{cases} \delta_1(p), & \mbox{für } p\in[a_1, a_2) \\ \delta_2(p), & \mbox{für } p\in[a_2, a_3]\end{cases} [/mm]

stetig.

Ist es so offensichtlich, dass [mm] \alpha [/mm] stetig ist, oder sollte ich das noch zeigen?
Ich habe das ja jetzt nur für 2 "benachbarte" Mengen gezeigt.. ist es denn richtig zu folgern, dass [mm] \bigcup_{k\in\IN}^{}M_k [/mm] wegzusammenhängend ist? Weil ich am Anfang O.B.d.A geschrieben habe?

Mfg, kullinarisch

        
Bezug
Wegzusammenhang: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Sa 26.05.2012
Autor: donquijote


> Sei X ein topologischer Raum, und sei [mm](M_k)_{k\in\IN}[/mm] eine
> Familie von Teilmengen von X mit der Eigenschaft [mm]M_k\cap M_{k+1}\not=\emptyset[/mm]
> für alle [mm]k\in\IN.[/mm] Zeige:
>  
> Ist jedes [mm]M_k[/mm] wegzusammenhängend, so auch
> [mm]\bigcup_{k\in\IN}^{}M_k[/mm]
>  Hallo zusammen. Wenn ich [mm]x, y \in\bigcup_{k\in\IN}^{}M_k[/mm]
> beliebig wähle, reicht es doch, wenn ich festlege, dass
> [mm]x\in M_i[/mm] und [mm]y\in M_{i+1}[/mm] und ich dann zeige, dass [mm]M_i \cup M_{i+1}[/mm]
> für ein [mm]i\in\IN[/mm] wegzusammenhängend ist. Also ein Punkt an
> dem man "O.B.d.A" schreiben darf, oder? Ich nehme mal an ja
> und mache dann so weiter:
>  
> Nach Vor. ist [mm]M_i\cap M_{i+1}\not=\emptyset[/mm] also gibt es
> ein [mm]z\in M_i\cap M_{i+1}.[/mm]
>  
> Da beide Mengen wegzusammenhängend sind gibt es 2 stetige
> Abbildungen:
>  
> [mm]\delta_1: [a_1, a_2]\to[/mm] X [mm]\delta_1(a_1)=x, \delta_1(a_2)=z[/mm]
> in [mm]M_i[/mm]
>  
> [mm]\delta_2: [a_2, a_3]\to[/mm] X [mm]\delta_2(a_2)=z, \delta_2(a_3)=y[/mm]
> in [mm]M_{i+1}[/mm]
>  
> Dann ist die Abbildung:
>  
> [mm]\alpha: [a_1, a_2]\cup[a_2, a_3]\to[/mm] X mit
> [mm]\alpha(p)=:\begin{cases} \delta_1(p), & \mbox{für } p\in[a_1, a_2) \\ \delta_2(p), & \mbox{für } p\in[a_2, a_3]\end{cases}[/mm]
>  
> stetig.
>  
> Ist es so offensichtlich, dass [mm]\alpha[/mm] stetig ist, oder
> sollte ich das noch zeigen?

Man könnte noch kurz begründen, warum [mm] \alpha [/mm] in [mm] p=a_2 [/mm] stetig ist

> Ich habe das ja jetzt nur für 2 "benachbarte" Mengen
> gezeigt.. ist es denn richtig zu folgern, dass
> [mm]\bigcup_{k\in\IN}^{}M_k[/mm] wegzusammenhängend ist?

Auch das solltest du noch näher begründen:
Durch Wiederholung des gleichen Argumentes (formal durch Induktion nach n) folgt, dass [mm] A_n=\bigcup_{k=1}^nM_k [/mm] für jedes n wegzusammenhängend ist.
Für den Wegzusammenhang der unendlichen Vereinigung brauchst du dann dein Argument vom Anfang:
Sind zwei Punkte x,y gegeben, so gibt es ein n mit [mm] x,y\in A_n [/mm] und damit einen Weg zwischen x und y.

> Weil ich
> am Anfang O.B.d.A geschrieben habe?
>  
> Mfg, kullinarisch


Bezug
                
Bezug
Wegzusammenhang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 So 27.05.2012
Autor: kullinarisch


> > Sei X ein topologischer Raum, und sei [mm](M_k)_{k\in\IN}[/mm] eine
> > Familie von Teilmengen von X mit der Eigenschaft [mm]M_k\cap M_{k+1}\not=\emptyset[/mm]
> > für alle [mm]k\in\IN.[/mm] Zeige:
>  >  
> > Ist jedes [mm]M_k[/mm] wegzusammenhängend, so auch
> > [mm]\bigcup_{k\in\IN}^{}M_k[/mm]
>  >  Hallo zusammen. Wenn ich [mm]x, y \in\bigcup_{k\in\IN}^{}M_k[/mm]
> > beliebig wähle, reicht es doch, wenn ich festlege, dass
> > [mm]x\in M_i[/mm] und [mm]y\in M_{i+1}[/mm] und ich dann zeige, dass [mm]M_i \cup M_{i+1}[/mm]
> > für ein [mm]i\in\IN[/mm] wegzusammenhängend ist. Also ein Punkt an
> > dem man "O.B.d.A" schreiben darf, oder? Ich nehme mal an ja
> > und mache dann so weiter:
>  >  
> > Nach Vor. ist [mm]M_i\cap M_{i+1}\not=\emptyset[/mm] also gibt es
> > ein [mm]z\in M_i\cap M_{i+1}.[/mm]
>  >  
> > Da beide Mengen wegzusammenhängend sind gibt es 2 stetige
> > Abbildungen:
>  >  
> > [mm]\delta_1: [a_1, a_2]\to[/mm] X [mm]\delta_1(a_1)=x, \delta_1(a_2)=z[/mm]
> > in [mm]M_i[/mm]
>  >  
> > [mm]\delta_2: [a_2, a_3]\to[/mm] X [mm]\delta_2(a_2)=z, \delta_2(a_3)=y[/mm]
> > in [mm]M_{i+1}[/mm]
>  >  
> > Dann ist die Abbildung:
>  >  
> > [mm]\alpha: [a_1, a_2]\cup[a_2, a_3]\to[/mm] X mit
> > [mm]\alpha(p)=:\begin{cases} \delta_1(p), & \mbox{für } p\in[a_1, a_2) \\ \delta_2(p), & \mbox{für } p\in[a_2, a_3]\end{cases}[/mm]
>  
> >  

> > stetig.
>  >  
> > Ist es so offensichtlich, dass [mm]\alpha[/mm] stetig ist, oder
> > sollte ich das noch zeigen?
>
> Man könnte noch kurz begründen, warum [mm]\alpha[/mm] in [mm]p=a_2[/mm]
> stetig ist

Ok, mit linksseitigem und rechtsseitigem Grenzwert ist das leicht einzusehen.

> > Ich habe das ja jetzt nur für 2 "benachbarte" Mengen
> > gezeigt.. ist es denn richtig zu folgern, dass
> > [mm]\bigcup_{k\in\IN}^{}M_k[/mm] wegzusammenhängend ist?
>
> Auch das solltest du noch näher begründen:
>  Durch Wiederholung des gleichen Argumentes (formal durch
> Induktion nach n) folgt, dass [mm]A_n=\bigcup_{k=1}^nM_k[/mm] für
> jedes n wegzusammenhängend ist.
>  Für den Wegzusammenhang der unendlichen Vereinigung
> brauchst du dann dein Argument vom Anfang:
>  Sind zwei Punkte x,y gegeben, so gibt es ein n mit [mm]x,y\in A_n[/mm]
> und damit einen Weg zwischen x und y.

Super, das hört sich doch schon viel präziser an, vielenk Dank!

Grüße, kulli

> > Weil ich
> > am Anfang O.B.d.A geschrieben habe?
>  >  
> > Mfg, kullinarisch
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]