matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisWegintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Wegintegral
Wegintegral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wegintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 So 27.11.2011
Autor: katrin10

Aufgabe
Bestimme [mm] \integral_{\gamma}{z*e^{i*\pi*z^2/2} *cos(e^{i*\pi*z^2/2}) )dz} [/mm] und [mm] \integral_{\gamma}{\overline{z}^2dz} [/mm] entlang der geraden Strecke [mm] \gamma [/mm] von i nach 1.


Hallo,
[mm] \gamma:[0,1] \to \IC, [/mm] t [mm] \mapsto [/mm] i+t(1-i)
Beim ersten Integral habe ich [mm] a(z)=e^{i*\pi*z^2/2} [/mm] genannt und erhalte dann [mm] \integral_{a(\gamma(0))}^{a(\gamma(1))}{\bruch{cos(x)dx}{(i*pi}}. [/mm]
Bei der zweiten Aufgabe habe ich für z [mm] \gamma [/mm] eingesetzt und das ganze noch mit der Ableitung von [mm] \gamma [/mm] multipliziert. Als Stammfunktion habe ich dann [mm] (1-i)/3*(-i+t(1+i))^3/(1+i). [/mm] Als Ergebnis habe ich dann [mm] \bruch{(1-i)^2}{3*(1+i)}. [/mm]
Stimmt das soweit?  
Vielen Dank.
Katrin

        
Bezug
Wegintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:25 So 27.11.2011
Autor: MathePower

Hallo katrin10,

> Bestimme [mm]\integral_{\gamma}{z*e^{i*\pi*z^2/2} *cos(e^{i*\pi*z^2/2}) )dz}[/mm]
> und [mm]\integral_{\gamma}{\overline{z}^2dz}[/mm] entlang der
> geraden Strecke [mm]\gamma[/mm] von i nach 1.
>  
> Hallo,
> [mm]\gamma:[0,1] \to \IC,[/mm] t [mm]\mapsto[/mm] i+t(1-i)
>  Beim ersten Integral habe ich [mm]a(z)=e^{i*\pi*z^2/2}[/mm] genannt
> und erhalte dann
> [mm]\integral_{a(\gamma(0))}^{a(\gamma(1))}{\bruch{cos(x)dx}{(i*pi}}.[/mm]


Ok. Fehlt nur noch die Berechnung.


> Bei der zweiten Aufgabe habe ich für z [mm]\gamma[/mm] eingesetzt
> und das ganze noch mit der Ableitung von [mm]\gamma[/mm]
> multipliziert. Als Stammfunktion habe ich dann
> [mm](1-i)/3*(-i+t(1+i))^3/(1+i).[/mm] Als Ergebnis habe ich dann
> [mm]\bruch{(1-i)^2}{3*(1+i)}.[/mm]
> Stimmt das soweit?  


Das vorige Ergebnis stimmt.

Hier kannst Du noch den Nenner rational machen.


> Vielen Dank.
>  Katrin


Gruss
MathePower

Bezug
                
Bezug
Wegintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 27.11.2011
Autor: katrin10

Vielen Dank für die schnelle Antwort.
Wenn ich über einen Weg [mm] \gamma [/mm] integriere, kann ich dann die Integralgrenzen als [mm] \gamma(0) [/mm] und [mm] \gamma(1) [/mm] auffassen und direkt schreiben: [mm] \bruch{1}{\pi*i}\integral_{\gamma}{a'(z)*cos(a(z))dz}= \bruch{1}{\pi*i}\integral_{\gamma(0)}^{\gamma(1)}{a'(z)*cos(a(z))dz}=\integral_{a(\gamma(0))}^{a(\gamma(1))}{\bruch{cos(x)dx}{i\cdot{}pi}} [/mm] oder muss man [mm] \bruch{1}{\pi*i}\integral_{\gamma}{a'(z)*cos(a(z))dz} [/mm] erst durch Substitution als [mm] \bruch{1}{\pi*i}\integral_{a\circ\gamma}{cos(x)dx} [/mm] schreiben und darauf dann die Definition des Wegintegrals anwenden. Man müsste ja wieder dasselbe Ergebnis bekommen.
Katrin

Bezug
                        
Bezug
Wegintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 So 27.11.2011
Autor: MathePower

Hallo katrin10,

> Vielen Dank für die schnelle Antwort.
> Wenn ich über einen Weg [mm]\gamma[/mm] integriere, kann ich dann
> die Integralgrenzen als [mm]\gamma(0)[/mm] und [mm]\gamma(1)[/mm] auffassen
> und direkt schreiben:
> [mm]\bruch{1}{\pi*i}\integral_{\gamma}{a'(z)*cos(a(z))dz}= \bruch{1}{\pi*i}\integral_{\gamma(0)}^{\gamma(1)}{a'(z)*cos(a(z))dz}=\integral_{a(\gamma(0))}^{a(\gamma(1))}{\bruch{cos(x)dx}{i\cdot{}pi}}[/mm]
> oder muss man
> [mm]\bruch{1}{\pi*i}\integral_{\gamma}{a'(z)*cos(a(z))dz}[/mm] erst
> durch Substitution als
> [mm]\bruch{1}{\pi*i}\integral_{a\circ\gamma}{cos(x)dx}[/mm]
> schreiben und darauf dann die Definition des Wegintegrals
> anwenden. Man müsste ja wieder dasselbe Ergebnis
> bekommen.


Beide Weg sind gangbar.


>  Katrin


Gruss
MathePower

Bezug
                                
Bezug
Wegintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:02 So 27.11.2011
Autor: katrin10

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]