matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPsychologieWahrscheinlichkeitstheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Psychologie" - Wahrscheinlichkeitstheorie
Wahrscheinlichkeitstheorie < Psychologie < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Psychologie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitstheorie: Berechnung der Wahrscheinlichk
Status: (Frage) beantwortet Status 
Datum: 16:44 Fr 23.01.2009
Autor: meinemama

Aufgabe
Die Ablehnungsrate einer wissenschaftlichen Zeitschrift beträgt 45%. Angenommen, die Artikel werden nicht nach sachlichen Kriterien, sondern per Zufall akzeptiert. Wie viele Artikel muss eine Person einreichen, um eine Chance von mindestens 75% zu haben, wenigsten einen Artikel publizieren zu können?

Kann mir bitte jemand die Lösung und den Rechenweg erklären??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitstheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:29 Fr 23.01.2009
Autor: Zwerglein

Hi,

> Die Ablehnungsrate einer wissenschaftlichen Zeitschrift
> beträgt 45%. Angenommen, die Artikel werden nicht nach
> sachlichen Kriterien, sondern per Zufall akzeptiert. Wie
> viele Artikel muss eine Person einreichen, um eine Chance
> von mindestens 75% zu haben, wenigstens einen Artikel
> publizieren zu können?

>  Kann mir bitte jemand die Lösung und den Rechenweg
> erklären??

Nach den Forenregeln solltest Du wenigstens ein paar eigene Ideen/Lösungsansatz "mitliefern".

Von meiner Seite wenigstens ein paar Tipps:
(1) Es handelt sich um eine Binomialverteilung.
(2) Da die Wahrscheinlichkeit für die Ablehnung eines Artikels (45% = 0,45) gegeben ist, es in der Fragestellung aber um die Annahme (=Nicht-Ablehnung) geht, solltest Du mit der Trefferwahrscheinlichkeit p=0,55 arbeiten.
(3) Gefragt ist letztlich die Kettenlänge n der Binomialverteilung.
(4) Ansatz: P(X [mm] \ge [/mm] 1) [mm] \ge [/mm] 0,75  oder: 1 - P(X=0) [mm] \ge [/mm] 0,75

So: Nun schau mal,  wie weit Du damit kommst!

mfG!
Zwerglein

Bezug
        
Bezug
Wahrscheinlichkeitstheorie: Unser Briefwechsel!
Status: (Antwort) fertig Status 
Datum: 22:47 Fr 23.01.2009
Autor: Zwerglein

Hi,

>  Sorry ich bin neu in diesem Forum und muss mich erstmal
>  durch die Strukturen tasten (Seitenaufbau)
>   Ich hatte überlegt, die Warscheinlichkeiten einzeln zu
>  berechnen und diese dann zu addieren zu einem Ergebnis
>  knapp unter 2 Versuchen. Danke für deine Hilfe!

Was meinst Du mit "knapp unter zwei"?
Kann man z.B. 1,7 Versuche machen?
Sicher nicht!
Daher lautet das Ergebnis:
Es müssen mindestens zwei Versuche gemacht werden.

Du hast das nun durch Probieren rausgekriegt.

Rechnerisch sieht die Sache etwa so aus:
1 - P(X=0) [mm] \ge [/mm] 0,75  <=>  P(X=0) [mm] \le [/mm] 0,25

<=> [mm] (0,45)^{n} \le [/mm] 0,25  | ln(...)
n*ln(0,45) [mm] \le [/mm] ln(0,25)  | : ln(0,45)

n [mm] \ge [/mm] 1,736.

Daraus folgt (wie oben beschrieben), dass n mindestens 2 sein muss.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Psychologie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]