matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeitsrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsrechnung: schwierige Textaufgabe
Status: (Frage) beantwortet Status 
Datum: 13:38 So 07.12.2014
Autor: Mathefreund22

Hallo, ich habe Schwierigkeiten bei dieser Aufgabe. Meine Lösungen zu a) und b) müssten richtig sein, nur bei c) bin ich mir unsicher. Wäre super wenn jemand einen kurzen Blick drauf werfen könnte ;)


Ein Kundenberater arbeitet in einem Call-Center.Er empfängt Anrufe aus aller Welt,d.h. aus allen Zeitzonen;aus diesem Grunde hängt die Häufigkeit der Anrufe nicht von der Tageszeit ab.

Sei nun t die (zufällige) Zeit zwischen zwei Anrufen,wobei wir diese Zeit in Sekunden messen.Die Erfahrung sagt,dass die Verteilungsfunktion V die folgende Struktur hat:Es gibt ein c > 0 mit

V(x) = p(t ≤ x) = 1 - [mm] e^{- cx} [/mm] für alle x ≥ 0

Dieser Wert V(x) beschreibt die Wahrscheinlichkeit dafür,dass es bis zum nächsten Anruf höchstens x Sekunden dauert.Oder anders ausgedrückt:Wenn man nach einem Anruf x Sekunden vergehen lässt,so ist V(x) die Wahrscheinlichkeit dafür,dass während dieser Zeitspanne ein neuer Anruf eingetroffen ist.
Der Vollständigkeit halber definieren wir

V(x) = p( t ≤ x ) = 0 für alle x < 0.^17


a.)Der Kundenberater hat festgestellt, dass er in der Hälfte aller Fälle höchstens 20 Sekunden auf den nächsten Anruf warten muss.Bestimmen Sie aus dieser Angabe die Zahl c in der Gleichung
V(x) = 1  -  [mm] e^{- cx} [/mm] .

Runden Sie bitte diese Zahl auf 5 Nachkommastellen.

Hinweis:In der Gleichung [mm] e^{u} [/mm] = v kann man auf beiden Seiten den natürlichen Logarithmus ln bilden;auf diese Weise erhält man u = ln(v).

b.)Wie wahrscheinlich ist es,dass spätestens nach 10 Sekunden der nächste Anruf ankommt?

c.)Bestimmen Sie die Zahl x mit der folgenden Eigenschaft:Mit 80%-iger Wahrscheinlichkeit dauert es höchstens x Sekunden,bis der nächste Anruf hereinkommt.

Hinweis: Auch hier führt beidseitiges Logarithmieren zum Ziel.

Meine Lösungen:

a)
V(20)=0,5
1 - [mm] e^{-20c}=0,5 [/mm]
c=ln(0.5)/−20
c=0.03465735903, gerundet 0.03466

b)
[mm] V(10)=1-e^{-10c} [/mm]
[mm] V(10)=1-e^{-0.3466}=0.293 [/mm]

c)
[mm] 0,8=1-e^{-0.03466 \times X} [/mm]
[mm] e^{-0.03466 \times X}=0,2 [/mm]
-0.03466 [mm] \times [/mm] X=ln(0,2)
x=ln(0,2)/-0.03466
x=46,43502344


        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 So 07.12.2014
Autor: M.Rex

Hallo

> Hallo, ich habe Schwierigkeiten bei dieser Aufgabe. Meine
> Lösungen zu a) und b) müssten richtig sein, nur bei c)
> bin ich mir unsicher. Wäre super wenn jemand einen kurzen
> Blick drauf werfen könnte ;)

>
>

> Ein Kundenberater arbeitet in einem Call-Center.Er
> empfängt Anrufe aus aller Welt,d.h. aus allen
> Zeitzonen;aus diesem Grunde hängt die Häufigkeit der
> Anrufe nicht von der Tageszeit ab.

>

> Sei nun t die (zufällige) Zeit zwischen zwei Anrufen,wobei
> wir diese Zeit in Sekunden messen.Die Erfahrung sagt,dass
> die Verteilungsfunktion V die folgende Struktur hat:Es gibt
> ein c > 0 mit

>

> V(x) = p(t ≤ x) = 1 - [mm]e^{- cx}[/mm] für alle x ≥ 0

>

> Dieser Wert V(x) beschreibt die Wahrscheinlichkeit
> dafür,dass es bis zum nächsten Anruf höchstens x
> Sekunden dauert.Oder anders ausgedrückt:Wenn man nach
> einem Anruf x Sekunden vergehen lässt,so ist V(x) die
> Wahrscheinlichkeit dafür,dass während dieser Zeitspanne
> ein neuer Anruf eingetroffen ist.
> Der Vollständigkeit halber definieren wir

>

> V(x) = p( t ≤ x ) = 0 für alle x < 0.^17

>
>

> a.)Der Kundenberater hat festgestellt, dass er in der
> Hälfte aller Fälle höchstens 20 Sekunden auf den
> nächsten Anruf warten muss.Bestimmen Sie aus dieser Angabe
> die Zahl c in der Gleichung
> V(x) = 1 - [mm]e^{- cx}[/mm] .

>

> Runden Sie bitte diese Zahl auf 5 Nachkommastellen.

>

> Hinweis:In der Gleichung [mm]e^{u}[/mm] = v kann man auf beiden
> Seiten den natürlichen Logarithmus ln bilden;auf diese
> Weise erhält man u = ln(v).

>

> b.)Wie wahrscheinlich ist es,dass spätestens nach 10
> Sekunden der nächste Anruf ankommt?

>

> c.)Bestimmen Sie die Zahl x mit der folgenden
> Eigenschaft:Mit 80%-iger Wahrscheinlichkeit dauert es
> höchstens x Sekunden,bis der nächste Anruf hereinkommt.

>

> Hinweis: Auch hier führt beidseitiges Logarithmieren zum
> Ziel.

>

> Meine Lösungen:

>

> a)
> V(20)=0,5
> 1 - [mm]e^{-20c}=0,5[/mm]
> c=ln(0.5)/−20
> c=0.03465735903, gerundet 0.03466

>

> b)
> [mm]V(10)=1-e^{-10c}[/mm]
> [mm]V(10)=1-e^{-0.3466}=0.293[/mm]

>

> c)
> [mm]0,8=1-e^{-0.03466 \times X}[/mm]
> [mm]e^{-0.03466 \times X}=0,2[/mm]

>

> -0.03466 [mm]\times[/mm] X=ln(0,2)
> x=ln(0,2)/-0.03466
> x=46,43502344

>

Das stimmt aber so, sehr schön

Marius

Bezug
                
Bezug
Wahrscheinlichkeitsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:58 So 07.12.2014
Autor: Mathefreund22

Hallo, vielen Dank für die Antwort!
(leider)gibt es noch die abschließende Aufgabe d):

Bestimmen Sie diejenige zu V gehörende Dichtefunktion f,die folgendermaßen aufgebaut ist:


[mm] f(x)=\begin{cases} V′(x), & \mbox{ falls } x\not=0 \mbox{} \\ 0, & \mbox{falls } x=0 \mbox{ } \end{cases} [/mm]

Zeichnen Sie außerdem die Funktionsgraphen von V und f in ein Koordinatensystem.

In meinen Heft sind die Informationen über die Dichtefunktion eher dürftig. Kannst du mir zum besseren Verständnis erklären, was die Funktion f(x) bedeuten soll, bzw. wie ich diese lesen muss, damit ich schonmal einen Ansatz habe?

Was heißt z.B. falls?
V'(X) ist dann die Ableitung von X ?


Grüße

Bezug
                        
Bezug
Wahrscheinlichkeitsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:05 Mo 08.12.2014
Autor: DieAcht

Hallo Mathefreund22!


[]Hier kannst du den Zusammenhang von Verteilungsfunktion und
Dichtefunktion nachlesen. Unabhängig von der letzten Teilauf-
gabe empfehle ich für einen kleinen Aha-Effekt Ausschau nach
der Verteilungsfunktion der Exponentialverteilung zu halten. ;-)

>  V'(X) ist dann die Ableitung von X ?

Nicht von [mm] $X\$, [/mm] sondern nach [mm] $X\$. [/mm] Übrigens ist das der richtige
Ansatz für die letzte Teilaufgabe.


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]