matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeitsraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeitsraum
Wahrscheinlichkeitsraum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsraum: diskret oder kontinuierlich?
Status: (Frage) beantwortet Status 
Datum: 14:33 Sa 14.02.2009
Autor: Kostja

Aufgabe
Es seien [mm] \alpha [/mm]  die Menge der reellen Zahlen, B die Menge aller positiven reellen Zahlen, F={{}, [mm] \alpha [/mm] ,B, [mm] \alpha [/mm] außer B} und P:-->[0,1] eine Abbildung mit P(B)=0,1 und [mm] P(\alpha [/mm] außer B)=0,9.
a) Ist [mm] (\alpha [/mm] ,F,P) ein diskreter Wahrscheinlichkeitsraum?
b) Ist [mm] (\alpha [/mm] ,F,P) ein kontinuierlicher Wahrscheinlichkeitsraum?
c) Es sei nun   [mm] \alpha [/mm] ein endliche Teilmenge der reellen Zahlen. Wir definieren für jede Teilmenge A von  [mm] \alpha [/mm]  den Wert P(A)=|A|/| [mm] \alpha| [/mm]
Zeigen Sie, dass ( [mm] \alpha,F,P) [/mm] ein diskreter Wahrscheinlichkeitsraum ist.

Hallo an alle,
Ich bin seit einigen Tagen dabei die Aufgabe zu lösen, leider ohne Erfolg.
Was ich nicht verstehe ist die Definition von kontinuierlichen W-Raum.
Die Lösung für a) wäre meiner Meinung nach, handelt es sich nicht um einen diskreten W-Raum, weil [mm] \alpha [/mm] nicht zu den endlichen oder abzählbar unendlichen Mengen gehört.
Und bei c) würde ich auf einen diskrete W-Raum tippen, aber wie soll ich das zeigen?

ich wäre Euch sehr dankbar, wenn Ihr mir bei b) und c) helfen würdet.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsraum: Ideen
Status: (Antwort) fertig Status 
Datum: 12:19 Di 17.02.2009
Autor: generation...x

a) Stimmt, denn sonst müsste [mm] \alpha [/mm] ja abzählbar sein.

b) Kannst du die Definition für kontinuierlichen WR hier angeben? Dann kann man sich das noch mal anschauen.

c) Ist diskret, aber du hast ein anderes F als bei a), nämlich die Menge aller Teilmengen von [mm] \alpha. [/mm] Dass [mm] \alpha [/mm] abzählbar ist, ist ja schon gegeben, jetzt musst du noch zeigen, das du überhaupt einen Wahrscheinlichkeitsraum vor dir hast.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]