matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsmaß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Wahrscheinlichkeitsmaß
Wahrscheinlichkeitsmaß < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Mi 06.04.2011
Autor: Foxy333

Hallo
Die Sigma-Algebra [mm] \mathcal{A}:= {\emptyset , \{a\},\{d\},\{b,c\},\{a,d\},\{a,b,c\},\{b,c,d\},omega \} [/mm] ist gegeben.
Nun soll man ein Wahrscheinlichkeitsmaß [mm] P:\mathcal{A} \to [/mm] [0,1] vollständig angeben, sodass [mm] P(\{a,d\})=\bruch{1}{8} [/mm] und [mm] P(\{b,c,d\})=\bruch{7}{8}. [/mm]
Nun weiß ich nicht genau, wie man ein Wahrscheinlichkeitsmaß überhaupt definiert.
Mir ist nur das einfache Laplacsche Wahrscheinlichkeitsmaß bekannt.

        
Bezug
Wahrscheinlichkeitsmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 06.04.2011
Autor: Al-Chwarizmi


> Hallo
>  Die Sigma-Algebra [mm]\mathcal{A}:= {\emptyset , \{a\},\{d\},\{b,c\},\{a,d\},\{a,b,c\},\{b,c,d\},omega \}[/mm]
> ist gegeben.
>  Nun soll man ein Wahrscheinlichkeitsmaß [mm]P:\mathcal{A} \to\ [0,1][/mm]
>  vollständig angeben, sodass [mm]P(\{a,d\})=\bruch{1}{8}[/mm]
> und [mm]P(\{b,c,d\})=\bruch{7}{8}.[/mm]
>  Nun weiß ich nicht genau, wie man ein
> Wahrscheinlichkeitsmaß überhaupt definiert.
>  Mir ist nur das einfache Laplacsche
> Wahrscheinlichkeitsmaß bekannt.


Hallo Foxy333,

ich würde die Menge   [mm] $\Omega\ [/mm] =\ [mm] \{a,b,c,d\}$ [/mm]  sowie ihre für
die Sigma-Algebra relevanten Teilmengen in einem
Mengendiagramm darstellen. Ordne diesen dann
Wahrscheinlichkeiten zu, zuerst die vorgegebenen
und dann die übrigen so, dass das Ganze den
Regeln für ein Wahrscheinlichkeitsmaß entspricht.
Die sind dir ja bestimmt bekannt.

LG    Al-Chw.


Bezug
                
Bezug
Wahrscheinlichkeitsmaß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 06.04.2011
Autor: Foxy333

Hallo
danke für deine Schnell antwort.
Also ich hab das nach deinem Tipp folgendermaßen gemacht:
[mm] P(\{a,d\})=\bruch{1}{8} [/mm]
Das Gegenereignis wäre: [mm] P(\{b,c\})=\bruch{7}{8} [/mm]
Außerdem gilt:
[mm] P(\{b,c,d\})=\bruch{7}{8} [/mm] und [mm] P(\{a\})=\bruch{1}{8} [/mm]
Nun darf man doch davon ausgehen, dass die Elementarereignisse disjunkt sind oder?
[mm] P(\{a,d\})= P(\{a\})+ P(\{d\})=\bruch{1}{8}, [/mm] sodass [mm] P(\{d\})=0 [/mm] folgt.

Damit macht man solang weiter, bis man jedem Ereignis aus de sigma-Algebra einer Wahrscheinlichkeit zugeordnet hat.
Reicht das aus für diese Aufgabenstellung,einfach jeder Teilmenge aus der sigma-Algebra einer Wahrscheinlichkeit zuzuordnen?

Noch eine kleine Frage: Wenn man ein Omega gegebe hat und dazu zwei Ereignisse A und B. Mit dem Laplacschen Wahrscheinlichkeitsmaß sind diese Ereignisse nicht stochastisch unabhängig.
Nun soll man ein anderes Wahrscheinlichkeitsmaß angeben, sodass die A und B stochastisch unabhängig sind.
Wie löst man solche Aufgaben?

Bezug
                        
Bezug
Wahrscheinlichkeitsmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 08:49 Do 07.04.2011
Autor: fred97


> Hallo
>  danke für deine Schnell antwort.
>  Also ich hab das nach deinem Tipp folgendermaßen
> gemacht:
>  [mm]P(\{a,d\})=\bruch{1}{8}[/mm]
>  Das Gegenereignis wäre: [mm]P(\{b,c\})=\bruch{7}{8}[/mm]
>  Außerdem gilt:
>  [mm]P(\{b,c,d\})=\bruch{7}{8}[/mm] und [mm]P(\{a\})=\bruch{1}{8}[/mm]
>  Nun darf man doch davon ausgehen, dass die
> Elementarereignisse disjunkt sind oder?

Ja


>  [mm]P(\{a,d\})= P(\{a\})+ P(\{d\})=\bruch{1}{8},[/mm] sodass
> [mm]P(\{d\})=0[/mm] folgt.
>  
> Damit macht man solang weiter, bis man jedem Ereignis aus
> de sigma-Algebra einer Wahrscheinlichkeit zugeordnet hat.


Genau


>  Reicht das aus für diese Aufgabenstellung,einfach jeder
> Teilmenge aus der sigma-Algebra einer Wahrscheinlichkeit
> zuzuordnen?

Ja



FRED

>  
> Noch eine kleine Frage: Wenn man ein Omega gegebe hat und
> dazu zwei Ereignisse A und B. Mit dem Laplacschen
> Wahrscheinlichkeitsmaß sind diese Ereignisse nicht
> stochastisch unabhängig.
> Nun soll man ein anderes Wahrscheinlichkeitsmaß angeben,
> sodass die A und B stochastisch unabhängig sind.
>  Wie löst man solche Aufgaben?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]