matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Wahrscheinlichkeitsfunktion
Wahrscheinlichkeitsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Di 06.04.2010
Autor: elba

Aufgabe
(i) Zeigen Sie, dass f(n)= [mm] \bruch{1}{n!}*\bruch{\alpha^n}{e^{\alpha}-1} [/mm] mit [mm] \alpha \in [/mm] (0,1) eine Wahrscheinlichkeitsfunktion auf [mm] \IN [/mm] >0 ist.

Dann muss ich doch zeigen, [mm] \summe_{i=1}^{n} [/mm] f(n) =1 ,oder?
So und ich kann doch den Teil [mm] \bruch{1}{n!}*\alpha^n [/mm] als [mm] e^{\alpha} [/mm] schreiben, oder?
Dann bleibt [mm] \bruch{e^{\alpha}}{e^{\alpha}-1} [/mm] übrig. Kann ich das Summenzeichen dann weglassen??
Und wie mach ich weiter, also ich denke mal, dass es eine Wahrscheinlichkeitsfunktion ist. Daher müsste ich 1 rausbekommen.
Danke für die Hilfe!

        
Bezug
Wahrscheinlichkeitsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Di 06.04.2010
Autor: Blech


> (i) Zeigen Sie, dass f(n)=
> [mm]\bruch{1}{n!}*\bruch{\alpha^n}{e^{\alpha}-1}[/mm] mit [mm]\alpha \in[/mm]
> (0,1) eine Wahrscheinlichkeitsfunktion auf [mm]\IN[/mm] >0 ist.
>  Dann muss ich doch zeigen, [mm]\summe_{i=1}^{n}[/mm] f(n) =1
> ,oder?

Sollte die Summe nicht eher über n und von 1 bis [mm] $\infty$ [/mm] gehen?

[mm] $\summe_{n=1}^{\infty}f(n)=1$ [/mm]

>  So und ich kann doch den Teil [mm]\bruch{1}{n!}*\alpha^n[/mm] als
> [mm]e^{\alpha}[/mm] schreiben, oder?

[mm] $\sum_{n=0}^\infty \frac{\alpha^n}{n!}=e^\alpha$ [/mm]

Die Summe für die e-Funktion beginnt bei 0, nicht 1.


>  Dann bleibt [mm]\bruch{e^{\alpha}}{e^{\alpha}-1}[/mm] übrig. Kann

Nicht ganz.

> ich das Summenzeichen dann weglassen??

Das hat mich bei Deiner Ausdrucksweise oben schon gestört. Du schreibst nicht den Teil [mm] $\frac{\alpha^n}{n!}$ [/mm] als [mm] $e^\alpha$, [/mm] die *Summe* oben ist [mm] $e^\alpha$. [/mm] Wenn Du das Summenzeichen nicht wegläßt, dann hast Du wirklich [mm] $\frac{\alpha^n}{n!}=e^\alpha$ [/mm] gesetzt und das ist völlig falsch. Deswegen sehe ich nicht, warum Du hier mit zwei Fragezeichen ungläubig fragst, ob Du das Summenzeichen weglassen kannst. =)


>  Und wie mach ich weiter, also ich denke mal, dass es eine
> Wahrscheinlichkeitsfunktion ist. Daher müsste ich 1
> rausbekommen.

Richtig. Weniger Flüchtigkeitsfehler und Du hast es.

ciao
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]