matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Wahrscheinlichkeitsfunktion
Wahrscheinlichkeitsfunktion < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mi 28.01.2015
Autor: Talvien

Aufgabe
Ein Würfel wird 10 mal geworfen. Sei x die Anzahl der Würfe, bei denen eine 2 oder 5 geworden wird.

a) Geben sie die Wahrscheinlichkeitsfunktion der Zufallsvariablen x an.
b) Wie groß ist die Wahrscheinlichkeit, dass bei mindestens 8 Würfen eine 2 oder 5 geworfen wird.
c) Bei durchschnittlich wie vielen Würfen wird die Augenzahl 2 oder 5 geworfen.

Ich habe leider überhaupt keine Ahnung wie ich die genannten Aufgaben lösen kann. Die allgemeine Wahrscheinlichkeitsfunktion in a) sieht meines Wissens in etwa so aus:
F Index X (i) = [mm] \summe_{j<=i}^{} [/mm] f Index X (j)

Für Aufgabe b weiß ich, dass ich das Ereignis A: "2 oder 5 wird gewürfelt" habe wobei P(A) = [mm] \bruch{1}{3} [/mm]

Und wie ich c löse ergibt sich wohl irgendwie aus den ersten Aufgaben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeitsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Mi 28.01.2015
Autor: luis52

Moin Talvien,

[willkommenmr]

Die Binomialverteilung ist dein Freund.

Bezug
                
Bezug
Wahrscheinlichkeitsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 28.01.2015
Autor: Talvien

Sehr cool, das hab ich gesucht!

Ich habe jetzt folgende Formel für Aufgabe b:

[mm] P(X\ge8) [/mm] = [mm] \summe_{i=8}^{10} \vektor{10 \\ i} [/mm] * [mm] \bruch{1}{3}^{i} [/mm] * [mm] \bruch{2}{3}^{10-i} [/mm]

Für c hab ich mir gedacht, nehme ich die Formel so:

P(X=k) = [mm] \vektor{10 \\ k} [/mm] * [mm] \bruch{1}{3}^k [/mm] * [mm] \bruch{2}{3}^{10-k} [/mm] = [mm] \bruch{1}{3} [/mm]

und löse dann nach k auf.

Ist die Vorgehensweise, abgesehen davon, dass ich das niemals aufgelöst bekomme, so richtig?

Bezug
                        
Bezug
Wahrscheinlichkeitsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mi 28.01.2015
Autor: luis52


> Sehr cool, das hab ich gesucht!
>  
> Ich habe jetzt folgende Formel für Aufgabe b:
>  
> [mm]P(X\ge8)[/mm] = [mm]\summe_{i=8}^{10} \vektor{10 \\ i}[/mm] *
> [mm]\bruch{1}{3}^{i}[/mm] * [mm]\bruch{2}{3}^{10-i}[/mm]
>  

[ok]

> Für c hab ich mir gedacht, nehme ich die Formel so:
>  
> P(X=k) = [mm]\vektor{10 \\ k}[/mm] * [mm]\bruch{1}{3}^k[/mm] *
> [mm]\bruch{2}{3}^{10-k}[/mm] = [mm]\bruch{1}{3}[/mm]
>  
> und löse dann nach k auf.

Das stimmt nicht, der Erwartungswert ist gemeint.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]