matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeitsberechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Wahrscheinlichkeitsberechnung
Wahrscheinlichkeitsberechnung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeitsberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 09:16 Mi 01.12.2004
Autor: matthias.h.

Ich bin Leiter einer Agentur und brauche verlässliche Wahrscheinlichkeitsberechnungen zu einzelnen Gewinnspielen.

Es geht um 3 Berechnungen, bei schneller und einsichtlicher Lösung bin ich gerne auch bereit eine kleine Spende auf das Matheraum-Konto zu überweisen.

Hier die einzelnen Gewinnspiele:

Aufg. 1

Wie groß ist die Wahrscheinlichkeit eine 4-stellige Zahl zu finden, die an den ersten beiden Stellen die Zahlenfolge von 01-99 und an der 3. und 4. Stelle die Zahlenfolge 01-20 aufweisen?



Aufg. 2

Geburtstagsgewinnspiel
Wie groß ist die Wahrscheinlichkeit ein Datum zu treffen, z.B. ein Geburtsdatum.
Tag (1-31), Monat (1-12), Jahr (00-99)

Wie groß ist die Wahrscheinlichkeit Tag und Monat treffen?
Wie groß ist die Wahrscheinlichkeit Tag, Monat und Jahr treffen?



Aufg. 3

Ein Bingo Spiel hat 90 Zahlen (Kugeln). Der Spieler hat einen Spielschein mit 5 beliebigen Zahlen von 1-90. Bei einer Ziehung von 10 Zahlen (Kugeln) (aus diesen Zahlen 1-90) müssen die vorgegebenen 5 Zahlen auf dem Spielschein getroffen werden. Wie groß ist die Wahrscheinlichkeit, dass der Gewinnfall eintritt.


Ich freue mich auf richtige Antworten.



Mit freundlichen Grüßen

Matthias H.



        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:13 Do 02.12.2004
Autor: Marc

Hallo Matthias H.!


> Aufg. 1
>  
> Wie groß ist die Wahrscheinlichkeit eine 4-stellige Zahl zu
> finden, die an den ersten beiden Stellen die Zahlenfolge
> von 01-99 und an der 3. und 4. Stelle die Zahlenfolge 01-20
> aufweisen?

Es gibt insgesamt [mm] $10^4$ [/mm] Möglichkeiten, eine 4-stellige Zahl (0000...9999) zu bilden.
Nun zu den "günstigen" Zahlen (die wahrscheinlich den Gewinn darstellen sollen).

Für die ersten Ziffer gibt es 10 Möglichkeiten, für die zweite 9 Möglichkeiten, für die dritte und vierte zusammen 20 Möglichkeiten.
Also haben 10*9*20=1.800 der 10.000 vierstelligen Zahlen die gewünschte Eigenschaft.

Wenn nun jede Zahl gleichwahrscheinlich (W'keit [mm] $=\bruch{1}{10.000}$) [/mm] ist, dann ist die gesuchte W'keit [mm] $\bruch{1.800}{10.000}=\bruch{18}{100}=18\%$ [/mm]

> Aufg. 2
>  
> Geburtstagsgewinnspiel
>  Wie groß ist die Wahrscheinlichkeit ein Datum zu treffen,
> z.B. ein Geburtsdatum.
>  Tag (1-31), Monat (1-12), Jahr (00-99)

Wie sieht denn eigentlich der Versuch (das Spiel) aus? Zieht man eine 6-stellige Zahl, wobei jede Ziffer eine aus 0...9 sein kann?
Falls ja, dann hängt das Ergebnis auch noch von dem Jahrhundert ab, aus dem die Jahreszahl stammt, denn das Jahrhundert 1900-1999 hatte weniger Tage als das Jahrhundert 2000-2099 haben wird (weil 1900 kein Schaltjahr war, aber 2000). Diese Ausführungen beziehen sich jetzt nur auf die W'keit, mit einer 6-stelligen Zahl ein Datum zu treffen.

Soll dagegen ein bestimmtes Datum (z.B. ein Geburtsdatum) getroffen werden, so ist beträgt die W'keit [mm] $\bruch{1}{1.000.000}$. [/mm]

Aber, wie gesagt, du müßtest noch näher angeben, wie genau der Versuch aussieht.
  

> Wie groß ist die Wahrscheinlichkeit Tag und Monat
> treffen?
>  Wie groß ist die Wahrscheinlichkeit Tag, Monat und Jahr
> treffen?
>  
>
>
> Aufg. 3
>  
> Ein Bingo Spiel hat 90 Zahlen (Kugeln). Der Spieler hat
> einen Spielschein mit 5 beliebigen Zahlen von 1-90. Bei
> einer Ziehung von 10 Zahlen (Kugeln) (aus diesen Zahlen
> 1-90) müssen die vorgegebenen 5 Zahlen auf dem Spielschein
> getroffen werden. Wie groß ist die Wahrscheinlichkeit, dass
> der Gewinnfall eintritt.

Hier wird ohne Zurücklegen gezogen, nehme ich an.

Bei der Berechnung bin ich mir nicht ganz sicher, vielleicht warten wir noch ein zweite Meinung ab.

Es gibt insgesamt [mm] ${90\choose10}$ [/mm] Bingo-Zahlen.

Bei jeweils [mm] ${85\choose 5}$ [/mm] von diesen kommen 5 vorgegebene Zahlen vor, also müßte die Gewinnwahrscheinlichkeit  [mm] $\bruch{{85\choose 5}}{{90\choose 10}}=\bruch{85!}{5!*80!}*\bruch{90!}{10!*80!}=\bruch{85*84*83*82*81}{5!}*\bruch{90*89*\ldots*81}{10!}=\bruch{7}{1220813}\approx 0,00057\%$ [/mm] sein.

Wie gesagt, ich bin mir hier nicht sicher.

Viele Grüße,
Marc

Bezug
                
Bezug
Wahrscheinlichkeitsberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:20 Do 02.12.2004
Autor: matthias.h.

zu Aufg. 1:

Wenn bei den ersten beiden Stellen mit den Zahlen 01-99 die Wahrscheinlichkeit eine Zahl zu treffen, 1% beträgt, und noch eine weitere Zahl in der Zahlenfolge von 01-20 zu treffen ist, so kann die Gesamtwahrscheinlichkeit ja nicht 18% betragen. Oder sieht das jemand anders?

zu Aufg. 2:

Das Geburtstagsgewinnspiel sieht so aus, dass tatsächlich das Geburtsdatum zu treffen ist, d.h. beim dem Tag ist es ja recht einfach. Die Wahrscheinlichkeit beträgt 1 zu 31. Jetzt soll dazu auch noch der Geburtsmonat getroffen werden, dazu stehen ja dann die Zahlen von 01-12 zur Verfügung. Wie hoch ist die Gesamtwahrscheinlichkeit. Wenn jetzt auch noch die Jahreszahl mit den letzten beiden Stellen (01-99) getroffen werden soll, wie hoch ist dann die Gesamtwahrscheinlichkeit (also Tag, Monat und Jahreszahl zweistellig)?

zu Aufg. 3:

Ich geb ja zu, es ist wirklich kompliziert. Also es wird ohne zurücklegen gezogen und nachdem 10 Kugeln gezogen wurden, ist das Spiel zu Ende. Auf dem Spielschein stehen 5 beliebige Zahlen aus der Zahlenreihe 1-90. Wie groß ist die Wahrscheinlichkeit diese 5 Zahlen zu treffen, bei einem Spieldurchgang?


Im voraus besten Dank für die Antworten.

Grüße
Matthias H.


Bezug
                        
Bezug
Wahrscheinlichkeitsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Do 02.12.2004
Autor: Stefan

Hallo Matthias!

> zu Aufg. 1:
>  
> Wenn bei den ersten beiden Stellen mit den Zahlen 01-99 die
> Wahrscheinlichkeit eine Zahl zu treffen, 1% beträgt, und
> noch eine weitere Zahl in der Zahlenfolge von 01-20 zu
> treffen ist, so kann die Gesamtwahrscheinlichkeit ja nicht
> 18% betragen. Oder sieht das jemand anders?

Hier hat Marc das Spiel wohl missverstanden (es war aber auch nicht eindeutig erkennbar, wie es aussehen sollte). Die Wahrscheinlichkeit für dieses Problem beträgt

$p = [mm] \frac{1}{99} \cdot \frac{1}{20} \approx [/mm] 0,000505 [mm] \quad (=0,0505\%)$. [/mm]

Begründung: Für die beiden ersten Ziffern gibt es 99 Möglichkeiten, für die letzten beiden 20. Die Wahrscheinlichkeit die ersten beiden Ziffern richtig zu tippen, ist also [mm] $p_1 [/mm] = [mm] \frac{1}{99}$. [/mm] Die Wahrscheinlichkeit die letzten beiden Ziffern richtig zu tippen, beträgt demnach [mm] $p_2 [/mm] = [mm] \frac{1}{20}$. [/mm] Die beiden Ereignisse sind unabhängig. Daher ist die Wahrscheinlichkeit sowohl die ersten beiden wie auch die letzten beiden Ziffern zu treffen, gerade gleich [mm] $p_1 \cdot p_2$, [/mm] und das wurde oben berechnet.


> zu Aufg. 2:
>  
> Das Geburtstagsgewinnspiel sieht so aus, dass tatsächlich
> das Geburtsdatum zu treffen ist, d.h. beim dem Tag ist es
> ja recht einfach. Die Wahrscheinlichkeit beträgt 1 zu 31.
> Jetzt soll dazu auch noch der Geburtsmonat getroffen
> werden, dazu stehen ja dann die Zahlen von 01-12 zur
> Verfügung. Wie hoch ist die Gesamtwahrscheinlichkeit. Wenn
> jetzt auch noch die Jahreszahl mit den letzten beiden
> Stellen (01-99) getroffen werden soll, wie hoch ist dann
> die Gesamtwahrscheinlichkeit (also Tag, Monat und
> Jahreszahl zweistellig)?

Wenn es wirklich so wäre, wie du es jetzt angibst, dann wäre die Wahrscheinlichkeit das richtige Geburtsdatum zu treffen, gerade

$p= [mm] \frac{1}{31} \cdot \frac{1}{12} \cdot \frac{1}{99} \approx [/mm] 0,00002715 [mm] \quad (=0,002715\%)$. [/mm]

Allerdings würde man dann nicht beachten, dass es manche Daten (etwa den 30.02. oder den 31.11.) gar nicht gibt. Sollen dem "Errater" also nur sinnvolle Daten überhaupt angeboten werden?

Dann würde ich die Wahrscheinlichkeit überschlagen (die Werte sind so gering, dass eine exakte Berechnung nicht notwendig erscheint). Sie betrüge in diesem Fall ungefähr (im Durchschnitt hat jeder Monat ca. 30,5 Tage):

$p= [mm] \frac{1}{30,5} \cdot \frac{1}{12} \cdot \frac{1}{99} \approx [/mm] 0,0000276 [mm] \quad [/mm] (=0,00276 [mm] \%)$, [/mm]

sie wäre also geringfügig höher.


> zu Aufg. 3:
>  
> Ich geb ja zu, es ist wirklich kompliziert. Also es wird
> ohne zurücklegen gezogen und nachdem 10 Kugeln gezogen
> wurden, ist das Spiel zu Ende. Auf dem Spielschein stehen 5
> beliebige Zahlen aus der Zahlenreihe 1-90. Wie groß ist die
> Wahrscheinlichkeit diese 5 Zahlen zu treffen, bei einem
> Spieldurchgang?


Die Antwort, die Marc (und vorher auch schon einmal Brigitte) angegeben hat, ist völlig korrekt, dafür garantiere ich. :-)

Liebe Grüße
Stefan

Bezug
                                
Bezug
Wahrscheinlichkeitsberechnung: winzige Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Do 02.12.2004
Autor: Brigitte

Hallo an alle!

> > zu Aufg. 2:
>  >  
> > Das Geburtstagsgewinnspiel sieht so aus, dass tatsächlich
>
> > das Geburtsdatum zu treffen ist, d.h. beim dem Tag ist es
>
> > ja recht einfach. Die Wahrscheinlichkeit beträgt 1 zu 31.
>
> > Jetzt soll dazu auch noch der Geburtsmonat getroffen
> > werden, dazu stehen ja dann die Zahlen von 01-12 zur
> > Verfügung. Wie hoch ist die Gesamtwahrscheinlichkeit.
> Wenn
> > jetzt auch noch die Jahreszahl mit den letzten beiden
> > Stellen (01-99) getroffen werden soll, wie hoch ist dann
>
> > die Gesamtwahrscheinlichkeit (also Tag, Monat und
> > Jahreszahl zweistellig)?
>  
> Wenn es wirklich so wäre, wie du es jetzt angibst, dann
> wäre die Wahrscheinlichkeit das richtige Geburtsdatum zu
> treffen, gerade
>  
> [mm]p= \frac{1}{31} \cdot \frac{1}{12} \cdot \frac{1}{99} \approx 0,00002715 \quad (=0,002715\%)[/mm].

Wenn man es ganz genau nimmt und (wie Matthias angab) auch 00 als Jahr berücksichtigt ist der letzte Bruch
$1/100$ statt $1/99$, aber das ändert natürlich nicht besonders viel ;-)  

> > zu Aufg. 3:
>  >  
> > Ich geb ja zu, es ist wirklich kompliziert. Also es wird
>
> > ohne zurücklegen gezogen und nachdem 10 Kugeln gezogen
>
> > wurden, ist das Spiel zu Ende. Auf dem Spielschein stehen
> 5
> > beliebige Zahlen aus der Zahlenreihe 1-90. Wie groß ist
> die
> > Wahrscheinlichkeit diese 5 Zahlen zu treffen, bei einem
>
> > Spieldurchgang?
>
>
> Die Antwort, die Marc (und vorher auch schon einmal
> Brigitte) angegeben hat, ist völlig korrekt, dafür
> garantiere ich. :-)

Danke. Dann bekomme ich dafür sogar noch ein Feedback :-)

Liebe Grüße
Brigitte

Bezug
                                        
Bezug
Wahrscheinlichkeitsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:54 Do 02.12.2004
Autor: Stefan

Liebe Brigitte!

> Wenn man es ganz genau nimmt und (wie Matthias angab) auch
> 00 als Jahr berücksichtigt ist der letzte Bruch
>  [mm]1/100[/mm] statt [mm]1/99[/mm], aber das ändert natürlich nicht
> besonders viel ;-)  

Dann hätte er das Problem aber einheitlich formulieren müssen. In seiner Ausgangsfrage steht: Jahre 00-99, in seiner Rückfrage plötzlich: Jahre 01-99. Und von dem letzten Stand bin ich jetzt mal ausgegangen.

Aber große Auswirkungen hat das eh nicht, wie gesagt. ;-)

Liebe Grüße
Stefan


Bezug
                                                
Bezug
Wahrscheinlichkeitsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Fr 03.12.2004
Autor: Brigitte

Lieber Stefan!

> Dann hätte er das Problem aber einheitlich formulieren
> müssen. In seiner Ausgangsfrage steht: Jahre 00-99, in
> seiner Rückfrage plötzlich: Jahre 01-99. Und von dem
> letzten Stand bin ich jetzt mal ausgegangen.

[peinlich] [sorry]

Liebe Grüße
Brigitte

Bezug
                                                
Bezug
Wahrscheinlichkeitsberechnung: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:47 Fr 03.12.2004
Autor: matthias.h.

Liebe Forumsmitglieder,

ich bedanke mich recht herzlich für die freundliche, schnelle und kompetente Beantwortung meiner Fragen. Ihr habt mir sehr geholfen.

Viele Grüße

Matthias H.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]