Wahrscheinlichkeitsberechnung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:21 Di 07.03.2006 | Autor: | derdau |
Also beim Zahlenlotto x Zahlen aus y Zahlen erinnere ich mich noch: Die Wahrscheinlichkeit ist y über x.
Jetzt frage ich mich, wie rechne ich die Wahrscheinlichkeiten bei Keno: Dort werden aus 80 Zahlen (m) 20 Zahlen (n) gezogen. Als Tipper darf ich z.B. 10 Zahlen (q) tippen. Wenn ich 0 Richtige (r) habe gibts was, bei 1nem Richtigen auch usw....
Wie rechne ich jetzt die Wahrscheinlichkeit w für r Richtige bei q getippten Zahlen, wobei n Zahlen aus einer Menge von m Zahlen gezogen werden.
w = (m über n).....
Ich stehe auf dem Schlauch.
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:30 Di 07.03.2006 | Autor: | Fugre |
> Also beim Zahlenlotto x Zahlen aus y Zahlen erinnere ich
> mich noch: Die Wahrscheinlichkeit ist y über x.
>
> Jetzt frage ich mich, wie rechne ich die
> Wahrscheinlichkeiten bei Keno: Dort werden aus 80 Zahlen
> (m) 20 Zahlen (n) gezogen. Als Tipper darf ich z.B. 10
> Zahlen (q) tippen. Wenn ich 0 Richtige (r) habe gibts was,
> bei 1nem Richtigen auch usw....
>
> Wie rechne ich jetzt die Wahrscheinlichkeit w für r
> Richtige bei q getippten Zahlen, wobei n Zahlen aus einer
> Menge von m Zahlen gezogen werden.
>
> w = (m über n).....
>
> Ich stehe auf dem Schlauch.
>
> # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Hallo derdau,
versuche wir es mal ganz einfach mit der Laplace-Wahrscheinlichkeit,
sprich die Wahrscheinlichkeit ist das Verhältnis der günstigen Ereignisse
zu den möglichen, also [mm] $P=\frac{E_g}{E_m}$
[/mm]
Die Anzahl der möglichen Ergebnisse haben wir schnell ermittelt, sie ist:
$E=80*79*78*...*71$ für den Fall, dass auch die Reihenfolge der
Züge eine Rolle spielt. Ist uns die Zugreihenfolge egal, so ziehen
wir einfach $10$ aus $80$, dafür gilt dann [mm] $E_m=\vektor{80 \\ 10}$
[/mm]
Bei den günstigen Fällen ist es ein wenig komplizierter, wird aber ersichtlich,
wenn wir uns den Binomialkoeffizienten anschauen.
$ [mm] \vektor{n \\ k}$ [/mm] beschreibt die Anzahl der Möglichkeiten $k$-Elemente aus
einer Menge mit dem Umfang $n$ zu ziehen.
Bei deinem Beispiel gibt es im Prinzip zwei verschiedene Mengen, auf der
einen Seite hast du eine Gruppe aus $60$ Nieten und eine aus $20$ Gewinnen.
Insgesamt ziehst du $10$ Lose, sodass du $l$ Gewinnzahlen hast und
$10-l$ Nieten.
Die Anzahl der günstigen Ereignisse [mm] $E_g$ [/mm] entspricht dem Produkt der
beiden Binomialkoeffizienten, also [mm] $E_g= \vektor{20 \\ l}* \vektor{60 \\ 10-l}$
[/mm]
Insgesamt folgt daraus die Wahrscheinlichkeit für $l$-Gewinnzahlen:
[mm] $P=\frac{\vektor{20 \\ l}* \vektor{60 \\ 10-l}}{ \vektor{80 \\ 10}}$
[/mm]
Überprüft bitte kurz das Ergebnis.
Ich hoffe, dass ich dir helfen konnte.
Gruß
Nicolas
|
|
|
|