matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWahrscheinlichkeiten im Lotto
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Wahrscheinlichkeiten im Lotto
Wahrscheinlichkeiten im Lotto < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten im Lotto: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:59 Mi 11.11.2009
Autor: Rotkehlchen

Aufgabe 1
Zeigen Sie: Bim Lottospiel 6 aus 49 (ohne Superzahl) gibt es 13983816 verschiedene Tippmöglichkeiten. Wie groß ist die Wahrscheinlichkeit für 6 Richtige?

Aufgabe 2
Beim Lottospiel 6 aus 49 gibt es verschiedene Gewinnränge. Man gewinnt z.B. auch
(1) wenn man 4 der 6 Gewinnzahlen richtig angekreuzt hat (4 Richtige)
(2) wenn man 3 der 6 Gewinnzahlen und die Zusatzzahl richtig angekreuzt hat (3 Richtige mit Zusatzzahl).

Wie groß sind in (1) bzw. (2) die Gewinnwahrscheinlichkeiten?

Aufgabe 3
Bestimmen Sie die Wahrscheinlichkeit für einen Lottotipp mit folgendem Gewinnrang:
(1) 4 Richtige mit Zusatzzahl
(2) 5 Richtige mit Zusatzzahl

Wie kann ich diese Aufgaben angehen, sodass ich zu einem Ergebnis komme?

Vielen Dank schon mal im Vorraus!

        
Bezug
Wahrscheinlichkeiten im Lotto: Tipp
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 11.11.2009
Autor: informix

Hallo Rotkehlchen,

> Zeigen Sie: Bim Lottospiel 6 aus 49 (ohne Superzahl) gibt
> es 13983816 verschiedene Tippmöglichkeiten. Wie groß ist
> die Wahrscheinlichkeit für 6 Richtige?
>  Beim Lottospiel 6 aus 49 gibt es verschiedene
> Gewinnränge. Man gewinnt z.B. auch
> (1) wenn man 4 der 6 Gewinnzahlen richtig angekreuzt hat (4
> Richtige)
>  (2) wenn man 3 der 6 Gewinnzahlen und die Zusatzzahl
> richtig angekreuzt hat (3 Richtige mit Zusatzzahl).
>  
> Wie groß sind in (1) bzw. (2) die
> Gewinnwahrscheinlichkeiten?
>  Bestimmen Sie die Wahrscheinlichkeit für einen Lottotipp
> mit folgendem Gewinnrang:
>  (1) 4 Richtige mit Zusatzzahl
>  (2) 5 Richtige mit Zusatzzahl
>  Wie kann ich diese Aufgaben angehen, sodass ich zu einem
> Ergebnis komme?

.. indem du uns als erstes zeigst, was du schon überlegt hast.

Wie viele Möglichkeiten gibt es insgesamt, aus 49 Zahlen 6 Zahlen auszuwählen?

Davon ist nur eine 6-er Reihe die "Richtige", wie groß ist also die Wkt. dafür?


Gruß informix

Bezug
                
Bezug
Wahrscheinlichkeiten im Lotto: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:05 Mi 11.11.2009
Autor: Rotkehlchen

Ist die Wahrscheinlichkeit dann nicht:
[mm] (1/13983816)^6 [/mm]    ???

Bezug
                        
Bezug
Wahrscheinlichkeiten im Lotto: Rechenfehler
Status: (Antwort) fertig Status 
Datum: 18:20 Mi 11.11.2009
Autor: informix

Hallo Rotkehlchen,

> Ist die Wahrscheinlichkeit dann nicht:
> [mm](1/13983816)^6[/mm]    ???

nein, sondern: [mm] \bruch{1}{\vektor{49\\6}} [/mm]
rechne selbst weiter!

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]