matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeiten berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeiten berechnen
Wahrscheinlichkeiten berechnen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 25.04.2016
Autor: meister_quitte

Aufgabe
In einem beliebigen Wahrscheinlichkeitsraum (Ω, A, P) seien zwei zuf¨allige Ereignisse A
und B mit P(A) = p, P(B) = q und P(A ∩ B) = r gegeben. Ermitteln Sie die folgenden
Wahrscheinlichkeiten:
P(A \ B), [mm] P($\overline{A\cap B}$), P($\overline{A}$ [/mm] ∩ B) und P(A ∪ [mm] $\overline{B}$)! [/mm]


Hallo Freunde der Mathematik.

ich wollte wissen, ob ich richtig gerechnet habe.

a) P(A \ B)= p-r

b) [mm] P($\overline{A \cap B}$)= [/mm] 1-r

c) [mm] P($\overline{A}$ [/mm] ∩ B)= r-p

d) P(A ∪ [mm] $\overline{B}$)= [/mm] p+1-q-r

Liebe Grüße

Christoph

        
Bezug
Wahrscheinlichkeiten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mo 25.04.2016
Autor: huddel


> In einem beliebigen Wahrscheinlichkeitsraum (Ω, A, P)
> seien zwei zuf¨allige Ereignisse A
>  und B mit P(A) = p, P(B) = q und P(A ∩ B) = r gegeben.
> Ermitteln Sie die folgenden
>  Wahrscheinlichkeiten:
>  P(A \ B), P([mm]\overline{A\cap B}[/mm]), P([mm]\overline{A}[/mm] ∩ B) und
> P(A ∪ [mm]\overline{B}[/mm])!
>  
> Hallo Freunde der Mathematik.
>  
> ich wollte wissen, ob ich richtig gerechnet habe.
>  
> a) P(A \ B)= p-r

jup

> b) P([mm]\overline{A \cap B}[/mm])= 1-r

jup

> c) P([mm]\overline{A}[/mm] ∩ B)= r-p

nicht ganz. Tip: [mm] $\overline{A} \cap [/mm] B = B [mm] \setminus [/mm] A$

> d) P(A ∪ [mm]\overline{B}[/mm])= p+1-q-r

nicht ganz. Tip: $A [mm] \cup \overline{B} [/mm] = [mm] \overline{\overline{A} \cap B}$ [/mm]

> Liebe Grüße
>  
> Christoph

LG
Huddel :)


Bezug
                
Bezug
Wahrscheinlichkeiten berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 25.04.2016
Autor: meister_quitte

Moin Huddel,

zu c) q-r

zu d) 1-q+r

Ist das richtig?

Liebe Grüße

Christoph

Bezug
                        
Bezug
Wahrscheinlichkeiten berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Mo 25.04.2016
Autor: meister_quitte

*push*

Bezug
                        
Bezug
Wahrscheinlichkeiten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Di 26.04.2016
Autor: DieAcht

Hallo Christoph!


Hier stand Quark!


Gruß
DieAcht

Bezug
                        
Bezug
Wahrscheinlichkeiten berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Di 26.04.2016
Autor: huddel


> Moin Huddel,
>  
> zu c) q-r

ist richtig.
$q-p$ wäre es. wenn $A [mm] \subset [/mm] B$. Da wir darüber nichts wissen ist deins richtig.

> zu d) 1-q+r

War ja die folgerung aus c. also richtig :)

> Ist das richtig?
>  
> Liebe Grüße
>  
> Christoph

LG
Huddel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]