matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeiten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeiten
Wahrscheinlichkeiten < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 Mo 15.10.2007
Autor: SweetMiezi88w

Aufgabe
[mm] $f(x)=x*e^{-x^2/2}$ [/mm] mit [mm] $D(f)=\IR^{\ge 0}$ [/mm] ist die Randfunktion der Wahrscheinlichkeitsverteilung einer nicht diskreten Zufallsvariable [mm] $X\ge [/mm] 0$. Die Fläche zwischen der Randfunktion und der x-Achse im Intervall $[a;b]$ gibt die Wahrscheinlichkeit dafür an, dass $X$ im Intervall $[a;b]$ liegt. Damit $f$ für [mm] $x\ge [/mm] 0$ eine Wahrscheinlichkeitsverteilung beschreiben kann, muss eine Bedingung für die Fläche zwischen dem Graphen von $f$ und x-Achse erfüllt sein.
Geben Sie diese Bedingung an und zeigen Sie, dass sie erfüllt ist.
Berechnen Sie [mm] $P(0\le [/mm] X [mm] \le [/mm] 1)$ und $P(4<X)$.
Für welches Intervall $[0;t]$ ist die Wahrscheinlichkeit $0{,}5$?
Berechnen Sie den Extrem- und den Wendepunkt von f.

Hallo!
Leider weiß ich nicht wie ich anfangen soll und verstehe die Aufgabe überhaupt nicht :(.
Danke schonmal für eure Hilfe! lg

        
Bezug
Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mo 15.10.2007
Autor: Martinius

Hallo,

die Bedingung für die Wahrscheinlichkeitsdichte ist, dass das bestimmte Integral über den Integrationsbereich (Verteilungsfunktion) 1 ergeben muss (Normierungsbedingung); diese Bedingung ist erfüllt:

[mm] $\integral_{0}^{\infty} x*e^{-x^2/2}\, [/mm] dx = [mm] \left[-e^{-x^2/2}\right]_{0}^{\infty}=1$ [/mm]

Dann musst Du noch berechnen

$P(0 [mm] \le [/mm] x [mm] \le [/mm] 1) = [mm] \integral_{0}^{1} x*e^{-x^2/2}\, [/mm] dx = [mm] \left[-e^{-x^2/2}\right]_{0}^{1}$ [/mm]

und

$P(4 [mm] \le [/mm] x [mm] \le \infty) [/mm] = [mm] \integral_{4}^{\infty} x*e^{-x^2/2}\, [/mm] dx = [mm] \left[-e^{-x^2/2}\right]_{4}^{\infty}$ [/mm]

und hier nach t auflösen:

$P(0 [mm] \le [/mm] x [mm] \le [/mm] t) = [mm] \integral_{0}^{t} x*e^{-x^2/2}\, [/mm] dx = [mm] \left[-e^{-x^2/2}\right]_{0}^{t}=0,5$ [/mm]

Für Extrem- und Wendepunkte deiner Wahrscheinlichkeitsverteilung musst Du die Ableitungen bilden.

LG, Martinius





Bezug
                
Bezug
Wahrscheinlichkeiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Mo 15.10.2007
Autor: SweetMiezi88w

dankeschön, du hast mir ein gutes stück weiter geholfen =)
liebe grüße und noch einen schönen abend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]