matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit bestimmen
Wahrscheinlichkeit bestimmen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit bestimmen: W´keit, Idee
Status: (Frage) beantwortet Status 
Datum: 18:02 Di 01.06.2010
Autor: schnecke-90

Aufgabe
In einer Eismasse E befinnden sich s Stücke Schokolade. Die Masse wird sorgfältig durchgeknetet und in gleiche Teile der Masse e zerlegt, die zu jeweils einer Kugel Eis verarbeitet werden. Wie groß ist die Wahrscheinlichkeit´dafür, dass sich in einer zufällig ausgewählten Eiskugel mindestens ein Stück Schokolade ist?

Ich habe diese Frage in keinem andere Forum gestellt.

Ich weiß leider nicht, was mit das mindestens 1 Stück sagen soll, bzw wie ich es einsetzen soll, da es ja bestimmt eine Formel dafür gibt.
Ich weiß, dass ich mit bernulli arbeiten soll und meine Ideen, mit denen ich aber nicht weiter komme, wenn sie denn richtig sind:


Durchschnittlich enthält jede Kugel s*(e/E) Stücke Schokolade
und Schokolade gelangt zu gleicher W´keit in die Kugel Eis
also P(A)=1/S

insgesamt habe ich e Kugeln Eis, also e versuche

Würde mich über Hilfe freuen, danke

        
Bezug
Wahrscheinlichkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:54 Sa 05.06.2010
Autor: steppenhahn

Hallo,

> In einer Eismasse E befinnden sich s Stücke Schokolade.
> Die Masse wird sorgfältig durchgeknetet und in gleiche
> Teile der Masse e zerlegt, die zu jeweils einer Kugel Eis
> verarbeitet werden. Wie groß ist die
> Wahrscheinlichkeit´dafür, dass sich in einer zufällig
> ausgewählten Eiskugel mindestens ein Stück Schokolade
> ist?
>  Ich habe diese Frage in keinem andere Forum gestellt.
>  
> Ich weiß leider nicht, was mit das mindestens 1 Stück
> sagen soll, bzw wie ich es einsetzen soll, da es ja
> bestimmt eine Formel dafür gibt.
>  Ich weiß, dass ich mit bernulli arbeiten soll und meine
> Ideen, mit denen ich aber nicht weiter komme, wenn sie denn
> richtig sind:
>  
>
> Durchschnittlich enthält jede Kugel s*(e/E) Stücke
> Schokolade

Das stimmt (bringt uns aber leider nicht so viel).

>  und Schokolade gelangt zu gleicher W´keit in die Kugel
> Eis
>  also P(A)=1/S

Hier fehlt leider die vollständige Modellierung, die du machen willst. (Was ist A...)
Die Modellierung

"Jede der m Kugeln wählt sich die Schokoladenstücke aus (Wahrscheinlichkeit 1/s)"

funktioniert nicht, weil die Wahrscheinlichkeit nicht konstant bleibt!

> insgesamt habe ich e Kugeln Eis, also e versuche

Das stimmt nicht. Die Eismasse E wird in gleiche Teile der Masse e zerlegt. Das bedeutet: Es gibt eine natürliche Zahl [mm] m\in\IN, [/mm] so dass E = m*e. Dieses "m" ist dann die Anzahl der Kugeln. Ist das klar?

----------

Folgendes führt zum Ziel:
Die Frage lässt sich als Bernoulli-Experiment auffassen, und zwar in folgender Modellierung:

"Jedes der s Schokoladenstücke wählt aus den m Kugeln Eis jeweils eine aus, in die es nach dem Verteilen kommt."

Dann hast du eine Bernoulli-Kette mit s Versuchen, Wahrscheinlichkeit 1/m = e/E , dass das Schokoladenstück in eine vorher ausgewählte Kugel (das ist die "zufällig ausgewählte Eiskugel" aus der Aufgabenstellung) kommt. Du willst nun [mm] P(X\ge [/mm] 1) wissen, ratsamer ist es aber, [mm] P(X\ge [/mm] 1) = 1-P(X=0) zu berechnen :-)

Grüße,
Stefan

Bezug
                
Bezug
Wahrscheinlichkeit bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 So 06.06.2010
Autor: schnecke-90

Hallo,
danke für den Tipp, aber eine genaue Wahrscheinlichkeit bekomme ich doch nicht raus, weil ich ja gar nicht weiß, wie viele Kugeln ich habe, oder?
Ich müsste dann ja eigentlich auch vom prinzip auch wieder n über k und dann die restformel, oder?

Bezug
                        
Bezug
Wahrscheinlichkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:22 So 06.06.2010
Autor: steppenhahn

Hallo,

> Hallo,
>  danke für den Tipp, aber eine genaue Wahrscheinlichkeit
> bekomme ich doch nicht raus, weil ich ja gar nicht weiß,
> wie viele Kugeln ich habe, oder?
>  Ich müsste dann ja eigentlich auch vom prinzip auch
> wieder n über k und dann die restformel, oder?

Du weißt "n = s", "k = 0", "p = 1/m = e/E".
Damit kannst du die Wahrscheinlichkeit berechnen. Da du keine Zahlen hast, wirst du es allgemein aufschreiben müssen.

Grüße,
Stefan

Bezug
                                
Bezug
Wahrscheinlichkeit bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 So 06.06.2010
Autor: schnecke-90

okay, dann danke ich dir, das meinte ich, ohne es genau ausrechnen zu können.

Bezug
                                
Bezug
Wahrscheinlichkeit bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Di 08.06.2010
Autor: gottfriedfuchs

Würde die Lösung dann so aussehen?

1 - ( [mm] \vektor{n \\ 0} [/mm] * [mm] (\bruch{1}{m})^{0} [/mm] * (1 - [mm] \bruch{1}{m} )^{n-0} [/mm] )
= 1 - (1 - [mm] \bruch{1}{m} )^{n} [/mm]
bzw.
= 1 - (1 -  [mm] \bruch{e}{E} )^{n} [/mm]

Bezug
                                        
Bezug
Wahrscheinlichkeit bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 08.06.2010
Autor: steppenhahn

Hallo,

> Würde die Lösung dann so aussehen?
>  
> 1 - ( [mm]\vektor{n \\ 0}[/mm] * [mm](\bruch{1}{m})^{0}[/mm] * (1 -
> [mm]\bruch{1}{m} )^{n-0}[/mm] )
>  = 1 - (1 - [mm]\bruch{1}{m} )^{n}[/mm]
>  bzw.
>  = 1 - (1 -  [mm]\bruch{e}{E} )^{n}[/mm]  

Ja, das stimmt so. Besser wäre aber noch, wenn du n durch s ersetzt (Damit wir eine Formel haben, die nur aus den Variablen der Aufgabenstellung besteht).

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]