matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWahrscheinlichkeit berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Kombinatorik" - Wahrscheinlichkeit berechnen
Wahrscheinlichkeit berechnen < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Mo 10.09.2007
Autor: kleine_Frau

Aufgabe
Es werden gleichzeitig 3 Karten aus einem Spiel mit 32 Karten gezogen, Mit welcher Wahrscheinlichkeit zieht man
a) drei Buben (Lösung: 0,08%)
b) keinen Buben (Lösung: 66,05%)
c) höchstens einen Buben (Lösung: 96,53%)
d) nur Herz (Lösung: 1,13%)
e) mindestens 2 Herz (Lösung: 14,68%)
f) weder Herz noch Bube (Lösung: 26,81%)
g) entweder drei Herzen oder drei Buben (Lösung: 0,73%)
h) drei Karten derselben Farbe (Lösung: 4,52%)
i) drei Karten unterschiedlicher Farben (Lösung: 41,29%)
k) drei Karten desselben Werts (Lösung: 0,65%)

Ich finde irgendwie keinen Ansatz. Das ist bestimmt total einfach.
Also das Kartenspiel hat insgesamt 32 Karten.
Es gibt 4 Buben im Spiel und 8 Herz-Karten.

Ich denke, dass man das mit folgender Formel rechnen muss:
http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Mo 10.09.2007
Autor: luis52


>  Ich finde irgendwie keinen Ansatz. Das ist bestimmt total
> einfach.

Dass du so gar keinen Ansatz findest, kann ich gar nicht glauben.  


>  
> Ich denke, dass man das mit folgender Formel rechnen muss:
>  http://de.wikipedia.org/wiki/Hypergeometrische_Verteilung

Manchmal.

Es gibt [mm] ${32\choose 3}=4960$ [/mm] Moeglichkeiten, 3 Karten aus 32
auszuwaehlen. Willst du die Wahrscheinlichkeiten der o.g. Ereignisse
berechnen, so musst du auszaehlen, auf wieviel Weisen das jeweilige
Ereignis zustande kommt. Bezeichnet man diese Haeufigkeit mit $h$,
so ist die Wahrscheinlichkeit gegeben durch $h/4906$.

Nehmen wir Teilaufgabe i). Es gibt 4 Moeglichkeiten, unterschiedliche
Farben auszuwaehlen. Fuer jede dieser 4 Farbzusammenstellung gibt es
[mm] $8^3$ [/mm] Moeglichkeiten, Karten der drei unterschiedlichen Farben
zusammenzustellen. Mithin ist [mm] $h=4\times 8^3=2048$ [/mm] und $h/4906=0.4129$,
wie behauptet.

lg
Luis                

Bezug
        
Bezug
Wahrscheinlichkeit berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Di 11.09.2007
Autor: Somebody


> Es werden gleichzeitig 3 Karten aus einem Spiel mit 32
> Karten gezogen, Mit welcher Wahrscheinlichkeit zieht man
> a) drei Buben (Lösung: 0,08%)

[mm]\mathrm{P}(\text{drei Buben})=\frac{\binom{4}{3}}{\binom{32}{3}}[/mm]


>  b) keinen Buben (Lösung: 66,05%)

[mm]\mathrm{P}(\text{keinen Buben})=\frac{\binom{32-4}{3}}{\binom{32}{3}}[/mm]


>  c) höchstens einen Buben (Lösung: 96,53%)

[mm]\mathrm{P}(\text{höchstens einen Buben})=\frac{\binom{32-4}{3}+\binom{4}{1}\cdot\binom{32-4}{2}}{\binom{32}{3}}[/mm]


>  d) nur Herz (Lösung: 1,13%)

[mm]\mathrm{P}(\text{nur Herz})=\frac{\binom{8}{3}}{\binom{32}{3}}[/mm]


>  e) mindestens 2 Herz (Lösung: 14,68%)

[mm]\mathrm{P}(\text{mindestens 2 Herz})=1-\mathrm{P}(\text{0 oder 1 Herz})=1-\frac{\binom{32-8}{3}+\binom{8}{1}\cdot\binom{32-8}{2}}{\binom{32}{3}}[/mm]


>  f) weder Herz noch Bube (Lösung: 26,81%)

[mm]\mathrm{P}(\text{weder Herz noch Bube})=\frac{\binom{32-8-2}{3}}{\binom{32}{3}}[/mm]


>  g) entweder drei Herzen oder drei Buben (Lösung: 0,73%)

[mm]\mathrm{P}(\text{3 Herz oder 3 Buben})=\frac{\binom{8}{3}+\binom{4}{3}}{\binom{32}{3}}[/mm]


>  h) drei Karten derselben Farbe (Lösung: 4,52%)

Erst eine Farbe auswählen, dann Karten...
[mm]\mathrm{P}(\text{gleiche Farbe})=\frac{\binom{4}{1}\cdot\binom{8}{3}}{\binom{32}{3}}[/mm]


>  i) drei Karten unterschiedlicher Farben (Lösung: 41,29%)

Erst drei Farben auswählen, dann Karten...
[mm]\mathrm{P}(\text{drei verschiedene Farben})=\frac{\binom{4}{3}\cdot \binom{8}{1}^3}{\binom{32}{3}}[/mm]


>  k) drei Karten desselben Werts (Lösung: 0,65%)

Erst einen Wert auswählen, dann Karten...
[mm]\mathrm{P}(\text{drei gleiche Werte})=\frac{\binom{8}{1}\cdot\binom{4}{3}}{\binom{32}{3}}[/mm]


>  Ich finde irgendwie keinen Ansatz.
> Das ist bestimmt total einfach.

Richtig.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]