matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeit Rückgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Wahrscheinlichkeit Rückgabe
Wahrscheinlichkeit Rückgabe < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Rückgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Fr 30.04.2010
Autor: HansPeter

Aufgabe
An einer übung nehmen n Studenten teil. Dabei vergessen diese, die Blätter mit dem jeweiligen Namen zu versehen. Die Rückhgabe erfolgt daraufhin rein zufällig. Bestimmen sie die Wahrscheinlichkeit, dass keiner der Studenten sein eigenes Blatt erhält (mit Begründung).

Hallo!
also ich hab mir folgende Gedanken gemacht: W'keit dass ein einzelner sein eigenes Blatt nicht erhält wäre: (1-1/n) und damit dass keiner sein eigenes blatt erhält: [mm] (1-1/n)^n [/mm]

ist das soweit richtig oder falsch? danke schonmal!

        
Bezug
Wahrscheinlichkeit Rückgabe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:51 Fr 30.04.2010
Autor: HansPeter

okay das scheint schonmal richtig zu sein wie ich gerade feststelle... das müsste das berühmte: recontre-problem sein.

okay... aber jetzt gehts weiter und zwar:

Wie groß ist da die Wahrscheinlichkeit, dass genau k (1 [mm] \le [/mm] k [mm] \le [/mm] n) Studenten ihr eigenes Blatt erhalten?
da hab ich jetzt irgendwie keine idee wie ich das machen sol.. ich hab bisher nur raus dass es für k = n -->1/n! aber wie mache ich das für andere k`?

Bezug
                
Bezug
Wahrscheinlichkeit Rückgabe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 02.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Wahrscheinlichkeit Rückgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 30.04.2010
Autor: Cybrina

Hallo! Wenn ich dich richtig verstanden habe, dann ist deine Antwort leider nicht richtig. Denn das würde doch im Fall n=2 bedeuten, dass die Wkt, dass keiner sein Blatt erhält [mm] (1-\bruch{1}{2})^2=\bruch{1}{4}. [/mm] Die ist aber offensichtlich [mm] \bruch{1}{2}. [/mm]

Und ja, es scheint sich wirklich um das Rencontre-Problem zu handeln (nachdem ich mal gegoogelt hab, was das ist ;) ) Hinweise dazu findest z.B. hier
http://www.mathematik.uni-kassel.de/stochastik.schule/sisonline/struktur/jahrgang25-2005/heft1/2005-01_kratz.pdf

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]