matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit, Produktmaß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit, Produktmaß
Wahrscheinlichkeit, Produktmaß < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit, Produktmaß: P'maß-Konstruktion für Beweis
Status: (Frage) beantwortet Status 
Datum: 21:15 Fr 21.05.2010
Autor: neuling_hier

Aufgabe
Seien [mm] $\Omega_1$ [/mm] und [mm] $\Omega_2$ [/mm] beides abzählbare Mengen und [mm] $\Omega [/mm] := [mm] \Omega_1\times\Omega_2$. [/mm]

Zeige:
Es ex. ein W'keitsmaß [mm] \IP [/mm] auf [mm] (\Omega, Pot(\Omega)), [/mm] so dass f.a. W'maße [mm] \IP_1 [/mm] auf [mm] (\Omega_1, Pot(\Omega_1)) [/mm] und [mm] \IP_2 [/mm] auf [mm] (\Omega_2, Pot(\Omega_2)) [/mm] gilt, dass [mm] \IP [/mm] nicht das Produktmaß von [mm] \IP_1 [/mm] und [mm] \IP_2 [/mm] ist.

Hallo liebes Forum,

an obiger Aufgabe hänge ich nun schon eine ganze Weile fest, und ich hoffe, dass jemand mir einen hilfreichen Tipp geben kann. Mein bisheriger Ansatz ist recht bescheiden und bringt mich bislang nicht weiter:

Da [mm] \Omega_1 [/mm] und [mm] \Omega_2 [/mm] beide abz'bar sind, existieren Bijektionen folgender Art:

  f: [mm] \Omega_1 \rightarrow \IN, [/mm]
  g: [mm] \Omega_2 \rightarrow \IN. [/mm]

Mein Gedanke ist, ein Produktmaß [mm] \IP [/mm] mit obigen Eigenschaften zu konstruieren, um dann zu zeigen, dass es nicht das Produktmaß von [mm] \IP_1 [/mm] und [mm] \IP_2 [/mm] sein kann. Ich habe dabei versucht, mit der geometrischen Folge eine Verteilung der Wahrscheinlichkeiten vorzunehmen, also sowas wie:

[mm] \IP(\{ (\omega_1, \omega_2) \}) [/mm] := [mm] \frac{1}{2^{f(\omega_1)\cdot g(\omega_2)}} [/mm] für alle  [mm] \omega_1\in\Omega_1 [/mm] und [mm] \omega_1\in\Omega_2, [/mm]

aber ich bekomme es nicht so recht hin (so klappt es offenbar nicht).

Kann mir jemand eine Hilfestellung geben, oder hat evtl. jemand eine Idee, wie man die obige Aussage geschickt zeigen kann?

Im Voraus schonmal vielen Dank für irgendeinen hilfreichen Tipp :-)



        
Bezug
Wahrscheinlichkeit, Produktmaß: Antwort
Status: (Antwort) fertig Status 
Datum: 23:59 Fr 21.05.2010
Autor: Blech

Hi,

ein Maß auf einem abzählbaren [mm] $\Omega$ [/mm] kann ohne Probleme einen endlichen Träger haben.

Also z.B.

$P: [mm] \mathcal{P}(\IN_0)\to [/mm] [0,1]$
[mm] $\forall A\in\mathcal{P}(\IN_0):\ P(A):=\frac12 |A\cap \{0,1\}|$ [/mm]

(das sieht komplizierter aus als es ist. Alles was es sagt, ist daß {0} und {1} jeweils Wkeit 1/2 haben und alle anderen Atome Wkeit 0, d.h. ein Münzwurf mit überdimensioniertem Maßraum. Theoretisch wäre auch P({0})=1 ein Wmaß, aber ich wollte zumindest noch ein bißchen Zufall behalten =)

Es gibt bereits auf [mm] $(\{0,1\}^2,\mathcal{P}(\{0,1\}^2)$ [/mm] ein Beispiel für ein Maß, das nicht in Produktmaße zerfällt. Und das kannst Du problemlos zu einem Maß auf ganz [mm] $\mathcal{P}(\IN^2)$ [/mm] deklarieren (bzw. erweitern).

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]