matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikWahrscheinlichkeit Fixpunkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Wahrscheinlichkeit Fixpunkt
Wahrscheinlichkeit Fixpunkt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit Fixpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 06.11.2007
Autor: trixi86

Aufgabe
Wie groß ist die Wahrscheinlichkeit, dass eine zufällige Permutation der Menge {1,....,n} mindestens einen Fixpunkt besitzt?

Also ich hab die Aufgaben folgendermaßen angegangen.
betrachtet man den Grundraum [mm] \Omega=[1,...,n]^{n} [/mm] als die menge aller Permutationen so ist [mm] |\Omega|=n!. [/mm]
Sei [mm] A_{i}={(\omega_{1},....,\omega_{n})\in \Omega :\omega_{i}=i} [/mm] die teilmenge aller Permutationen mit Fixpunkt i.

[mm] \Rightarrow [/mm] das gesuchte Ereignis A (alle Permutationen mit mind einem Fixpunkt) ist die Vereinigung aller [mm] A_{i} [/mm]

Laut Siebformel kann man doch folgenden Ansatz wählen:

[mm] \mathcal{P}(A) =\summe_{k=1}^{n}(-1)^{k-1} S_{k} [/mm]


wobei [mm] S_{k}:=\summe_{1\le i_{1}< ...
aber was ich jetzt damit anfangen soll weiß ich nicht genau. steh irgendwie voll auf dem schlauch.

wär lieb wenn mir jemand helfen könnte. danke

        
Bezug
Wahrscheinlichkeit Fixpunkt: anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 08:40 Mi 07.11.2007
Autor: statler

Guten Morgen!

> Wie groß ist die Wahrscheinlichkeit, dass eine zufällige
> Permutation der Menge {1,....,n} mindestens einen Fixpunkt
> besitzt?

Ist es nicht einfacher, sich Gedanken zur Gegenwahrscheinlichkeit zu machen? Also konkret: Wie viele Permutationen haben keinen Fixpunkt?

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Wahrscheinlichkeit Fixpunkt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:12 Mi 07.11.2007
Autor: trixi86

Also erst mal danke für den Tipp, ich glaube jetzt auch dass es einfacher ist mit dem Komplement zu rechnen.Hab jetzt auch einen Ansatz. Bin mir aber nicht sicher ob das schon alles ist  oder ob da schon ein Grundlegender Fehler beinhaltet ist.Also

Sei [mm] \Omega= Per_{k}^{n} [/mm]  (k-Permutationen aus {1,...,n} mit Wiederholung)

Dann ist das Ereigniss [mm] A=(a_{1},...,a_{n}) \in \Omega [/mm] : es gibt i,j [mm] \in [/mm] {1,...,n} mit [mm] a_{j}=a_{i} [/mm] und i [mm] \not= [/mm] j

Es gilt für die gesuchte Wahrscheinlichkeit
[mm] \mathcal{P}(A)=\bruch{|A|}{| \Omega|} [/mm]

Außerdem:
[mm] \mathcal{P}(A)= [/mm] 1- [mm] \mathcal{P}(A^{c}) [/mm] =1- [mm] \mathcal{P}( \Omega \backslash [/mm] A) =1- [mm] \mathcal{P}(Per_{k, \not=}^{n}) [/mm] (mit [mm] Per_{k, \not=}^{n}= [/mm] k-Permutationen aus{1,..,n} ohne Wiederholung)
= 1- [mm] \bruch{|Per_{k, \not=}^{n}|}{| \Omega|} [/mm]

Aber jetzt komm ich nicht mehr weiter. was ist denn [mm] |Per_{k, \not=}^{n}|= [/mm] ????
dass | [mm] \Omega [/mm] |= [mm] n^{k} [/mm] weiß ich (oder???)



Bezug
                        
Bezug
Wahrscheinlichkeit Fixpunkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 09.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]