matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikWahrscheinlichkeit,Ergebnisrau
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Wahrscheinlichkeit,Ergebnisrau
Wahrscheinlichkeit,Ergebnisrau < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit,Ergebnisrau: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 03.10.2007
Autor: mickeymouse

Aufgabe
ein gerätehersteller führt vor jeder großen lieferung folgenden test durch: es werden nacheinander geräte "mit zurücklegen" geprüft, bis das zweite einwandfreie bzw. das zweite mangelhafte gerät aufgetreten ist. im ersten fall wird die lieferung freigegeben, im zweiten fall zurückbehalten.
a) geben sie einen geeignete ergebnisraum an.
b) wie groß ist die wahrscheinlichkeit höchstens, dasss lieferungen mit einem anteil p [mm] \ge [/mm] 0,2 von mangelhaften geräten bei diesem testverfahren freigegeben werden?
c) mit welcher wahrscheinlichkeit wird die sendung zurückbehalten, wenn gilt  p= 0,1 ?

zu a)
E= einwandfrei
M= mangelhaft
dann hab ich als ergebnisraum {EME;EE;MEE;MEM;MM;EMM}
stimmt das so?
zu b)
lösung müsste sein: 89,6%
aber wie kommt man darauf? in den fällen EME,EE,MEE wird die lieferung ja freigegeben. bei EME und MEE ist jeweils [mm] \bruch{1}{3} [/mm]  fehlerhaft,o der? aber wie komm ich dann auf die lösung?
zu c)
lösung müsste sein: 2,8%
aber wie komme ich denn darauf?

danke..:)

        
Bezug
Wahrscheinlichkeit,Ergebnisrau: Antwort
Status: (Antwort) fertig Status 
Datum: 00:18 Do 04.10.2007
Autor: Blech


> ein gerätehersteller führt vor jeder großen lieferung
> folgenden test durch: es werden nacheinander geräte "mit
> zurücklegen" geprüft, bis das zweite einwandfreie bzw. das
> zweite mangelhafte gerät aufgetreten ist. im ersten fall
> wird die lieferung freigegeben, im zweiten fall
> zurückbehalten.
>  a) geben sie einen geeignete ergebnisraum an.
>  b) wie groß ist die wahrscheinlichkeit höchstens, dasss
> lieferungen mit einem anteil p [mm]\ge[/mm] 0,2 von mangelhaften
> geräten bei diesem testverfahren freigegeben werden?
>  c) mit welcher wahrscheinlichkeit wird die sendung
> zurückbehalten, wenn gilt  p= 0,1 ?
>  zu a)
>  E= einwandfrei
>  M= mangelhaft
>  dann hab ich als ergebnisraum {EME;EE;MEE;MEM;MM;EMM}
>  stimmt das so?

Ja.

>  zu b)
> lösung müsste sein: 89,6%
>  aber wie kommt man darauf? in den fällen EME,EE,MEE wird
> die lieferung ja freigegeben. bei EME und MEE ist jeweils
> [mm]\bruch{1}{3}[/mm]  fehlerhaft,o der? aber wie komm ich dann auf
> die lösung?

Du brauchst gar keine komplizierten Überlegungen, nur:
P({EME})+P({EE})+P({MEE})
P({EME})=P("1. Ziehung einwandfrei")*P("2.Ziehung fehlerhaft")*P("3. Ziehung einwandfrei")
...

>  zu c)
>  lösung müsste sein: 2,8%
>  aber wie komme ich denn darauf?

Genauso, nur für MEM, MM, EMM und p=0,1
(oder, wenn Du b symbolisch gelöst hast, brauchst Du nur p=0,1 einzusetzen und das Ergebnis dann von 1 abzuziehen. "Sendung zurückbehalten" ist das Komplementärereignis von "Sendung freigegeben". Spart ein bißchen Arbeit =)
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]