matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Di 21.08.2012
Autor: Kuriger

Hallo

Folgende Angaben sind bekannt
Von den Ereignissen A, B und C weiss man:
- Sie sind paarweise unabhängig
- Mit Wahrscheinlichkeit 1/8 tritt keines der Ereignisse in
- Alle Ereignisse sind gleich wahrscheinlich
[mm] A\capB [/mm] und C sind unabhängig

Daraus weiss ich:
P(A) = P(B) = P(C) = p
[mm] \bruch{7}{8} [/mm] = P(A) + P(B) + P(C) - P(A [mm] \cap [/mm] B) - P(A [mm] \cap [/mm] C) - P(B [mm] \cap [/mm] C) + P(A [mm] \cap [/mm] B [mm] \cap [/mm] C)

Doch wie kann ich weiterfahren?
Ich kann nun die variable p einführen

[mm] \bruch{7}{8} [/mm] = p + p + p - P(A [mm] \cap [/mm] B) - P(A [mm] \cap [/mm] C) - P(B [mm] \cap [/mm] C) + P(A [mm] \cap [/mm] B [mm] \cap [/mm] C)
Aber wie ich die anderen Beziehungen ausdrücken kann, weiss ich nciht



        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Di 21.08.2012
Autor: Diophant

Moin Kuriger,

wie lautet eigentlich die Aufgabe? :-)

> Folgende Angaben sind bekannt
> Von den Ereignissen A, B und C weiss man:
> - Sie sind paarweise unabhängig
> - Mit Wahrscheinlichkeit 1/8 tritt keines der Ereignisse
> in
> - Alle Ereignisse sind gleich wahrscheinlich
> [mm]A\capB[/mm] und C sind unabhängig

Das mit A und C verstehe ich nicht. Oben steht doch schon, dass A, B und C paarweise unabhängig sind?

>
> Daraus weiss ich:
> P(A) = P(B) = P(C) = p
> [mm]\bruch{7}{8}[/mm] = P(A) + P(B) + P(C) - P(A [mm]\cap[/mm] B) - P(A [mm]\cap[/mm]
> C) - P(B [mm]\cap[/mm] C) + P(A [mm]\cap[/mm] B [mm]\cap[/mm] C)
>
> Doch wie kann ich weiterfahren?
> Ich kann nun die variable p einführen
>
> [mm]\bruch{7}{8}[/mm] = p + p + p - P(A [mm]\cap[/mm] B) - P(A [mm]\cap[/mm] C) - P(B
> [mm]\cap[/mm] C) + P(A [mm]\cap[/mm] B [mm]\cap[/mm] C)
> Aber wie ich die anderen Beziehungen ausdrücken kann,
> weiss ich nciht

Wie iste denn die stochastische Unabhängigkeit definiert? Diese Definition muss hier ins Spiel kommen. Auch wenn nicht dasteht, was eigentlich dein Ziel ist, kann man so viel sagen.


Gruß, Diophant

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Di 21.08.2012
Autor: Kuriger

Sorry kann nicht mehr richtig abschreiben:
Es sollte heissen A [mm] \cap [/mm] B und C sind unabhängig


Unabhägigkeit
P(A) * P(B) = P (A [mm] \cap [/mm] B)
P(A) * P(B) * P(C) = P (A [mm] \cap [/mm] B  [mm] \cap [/mm] C)

Okay mich glaub weiter, werde das am Abend nochmals anschauen.
Danke schon mal für den Hinweis


Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Di 21.08.2012
Autor: Diophant

Hallo Kuriger,

> Sorry kann nicht mehr richtig abschreiben:
> Es sollte heissen A [mm]\cap[/mm] B und C sind unabhängig
>
> Unabhägigkeit
> P(A) * P(B) = P (A [mm]\cap[/mm] B)
> P(A) * P(B) * P(C) = P (A [mm]\cap[/mm] B [mm]\cap[/mm] C)

ok, jetzt macht das aber Sinn: von A und B weiß man schon, dass sie unabhängig sind, also folgt aus dem Hinweis ja genau

[mm] P({A}\cap{B}\cap{C})=P(A)*P(B)*P(C) [/mm]


Gruß, Diophant


Bezug
                                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 21.08.2012
Autor: Kuriger

Hallo


[mm] \bruch{7}{8} [/mm] = p + p + p - P(A [mm] \cap [/mm] B) - P(A [mm] \cap [/mm] C) - P(B [mm] \cap [/mm]  C) + P(A [mm] \cap [/mm] B [mm] \cap [/mm] C)

P(A [mm] \cap [/mm] B) = [mm] p^2 [/mm]
P(B [mm] \cap [/mm]  C) = [mm] p^2 [/mm]
P(A [mm] \cap [/mm] B [mm] \cap [/mm] C) =  [mm] p^3 [/mm]

[mm] \bruch{7}{8} [/mm] = p + p + p - [mm] 3p^2 [/mm] + [mm] p^3 [/mm]

p = [mm] \bruch{1}{2} [/mm]

Also P(A) = 0.5

passtd as?

Danke


Bezug
                                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Di 21.08.2012
Autor: Diophant

Hallo,

ja, das ist jetzt alles richtig. [ok]


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]