matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Fr 20.03.2009
Autor: Dinker

Guten Abend

[Dateianhang nicht öffentlich]


E = "zwei verschieden Fabrige"

E = [mm] \{RB, RW, RS, BW, BS, WS, Br, .....} [/mm]


P(E)  =2 *( [mm] \bruch{2}{20} [/mm] * [mm] \bruch{2}{19} [/mm] + [mm] \bruch{2}{20} [/mm] * [mm] \bruch{6}{19} [/mm] + [mm] \bruch{2}{20} [/mm] * [mm] \bruch{10}{19} [/mm] + [mm] \bruch{2}{20} [/mm] * [mm] \bruch{6}{19} [/mm] + [mm] \bruch{2}{20} [/mm] * [mm] \bruch{10}{19} [/mm] + [mm] \bruch{6}{20} [/mm] * [mm] \bruch{10}{19}) [/mm] = [mm] \bruch{64}{95} [/mm]

K = "zwei gleichfarbige"

K =  [mm] \{RR, BB, WW, SS\} [/mm]
P(K) = [mm] \bruch{2}{20} [/mm] * [mm] \bruch{1}{19} [/mm] + [mm] \bruch{2}{20} [/mm] * [mm] \bruch{1}{19} [/mm] + [mm] \bruch{6}{20} [/mm] * [mm] \bruch{5}{19} [/mm] + [mm] \bruch{10}{20} [/mm] * [mm] \bruch{9}{19} [/mm] = [mm] \bruch{31}{95} [/mm]
Also wäre es nicht genau die Hälfte....
Kann das sein?
-------------------------------------------------------------------------------------
Aufgabe b)
x = Anzahl schwarze
E = [mm] \{SS, WW\} [/mm]
P(E) = [mm] \bruch{x}{10} [/mm] * [mm] \bruch{x-1}{9} [/mm] + [mm] \bruch{10-x}{10} [/mm] * [mm] \bruch{9-x}{9} [/mm]
= [mm] \bruch{x(x-1) + (10-x) * (9-x)}{90} [/mm]

K = [mm] \{SW, WS\} [/mm]
P(K) = 2 * [mm] \bruch{x}{10} [/mm] * [mm] \bruch{10-x}{9} [/mm]
= [mm] \bruch{2x(10-x)}{90} [/mm]

[mm] \bruch{16}{15}P(E) [/mm] = P(K)

[mm] \bruch{16}{15} [/mm] * [mm] (\bruch{x(x-1) + (10-x) * (9-x)}{90}) [/mm] = [mm] \bruch{2x(10-x)}{90} [/mm]

[mm] \bruch{16}{15} [/mm] * [mm] \bruch{2x^{2} -20x + 90}{90} [/mm] = [mm] \bruch{20x-2x^{2}}{90} [/mm]

[mm] 62x^{2} [/mm] - 620x + 1440
[mm] x_{1} [/mm] = 6.332 was leider falsch ist
[mm] x_{2} [/mm] = ......

Wo liegt das Problem?
Besten Dank
Gruss Dinker









Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Wahrscheinlichkeit: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 21.03.2009
Autor: informix

Guten Abend Dinker,
>  
> [Dateianhang nicht öffentlich]
>  
>
> E = "zwei verschieden Fabrige"
>  
> E = [mm]\{RB, RW, RS, BW, BS, WS, Br, .....}[/mm]
>  
>
> [mm]P(E)=2*(\bruch{2}{20}*\bruch{2}{19}+\bruch{2}{20}*\bruch{6}{19}+\bruch{2}{20}*\bruch{10}{19}+\bruch{2}{20}*\bruch{6}{19}+\bruch{2}{20}*\bruch{10}{19}+\bruch{6}{20}*\bruch{10}{19})=\bruch{64}{95}[/mm]

[wenn du keine Leerzeichen zwischen den Brüchen machst, werden die Formeln leichter lesbar...] ;-)

Könntest du bitte mal mit Worten beschreiben wie du auf die ersten beiden (und dann hoffentlich analog auf die weiteren Summanden) gekommen bist?
So einfach aus diesem langen Term kann ich das nicht ablesen, weil ich vermute, dass er falsch ist.

>  
> K = "zwei gleichfarbige"
>  
> K =  [mm]\{RR, BB, WW, SS\}[/mm]
>  P(K) = [mm]\bruch{2}{20}[/mm] *
> [mm]\bruch{1}{19}[/mm] + [mm]\bruch{2}{20}[/mm] * [mm]\bruch{1}{19}[/mm] +
> [mm]\bruch{6}{20}[/mm] * [mm]\bruch{5}{19}[/mm] + [mm]\bruch{10}{20}[/mm] *
> [mm]\bruch{9}{19}[/mm] = [mm]\bruch{31}{95}[/mm]
>  Also wäre es nicht genau die Hälfte....
>  Kann das sein?
>  

Wenn deine Rechnung richtig wäre, wäre die Antwort auf die gestellte Frage schlicht "nein".
Aber ich vermute, dass deine Rechnung nicht richtig ist.

Gruß informix


Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Sa 21.03.2009
Autor: Dinker

Guten Abend
>  
> Könntest du bitte mal mit Worten beschreiben wie du auf die
> ersten beiden (und dann hoffentlich analog auf die weiteren
> Summanden) gekommen bist?
>  So einfach aus diesem langen Term kann ich das nicht
> ablesen, weil ich vermute, dass er falsch ist.

Also ich schau den Fall an, dass die erste Kugel eine Rot ist, die zweite Kugel Blau
Total sind 20 Kugeln verfügbar, davon 2 Rot also [mm] \bruch{2}{20} [/mm]
Nun da die Kugel nicht zurückgelegt wird, sind es total nur noch 19 Kugeln, davon sind 2 blau, also [mm] \bruch{2}{20} [/mm]

Vielen Dank
Gruss Dinker

Bezug
                        
Bezug
Wahrscheinlichkeit: Nachfrage
Status: (Antwort) fertig Status 
Datum: 13:38 So 22.03.2009
Autor: informix

Hallo Dinker,

> Guten Abend
>  >  
> > Könntest du bitte mal mit Worten beschreiben wie du auf die
> > ersten beiden (und dann hoffentlich analog auf die weiteren
> > Summanden) gekommen bist?
>  >  So einfach aus diesem langen Term kann ich das nicht
> > ablesen, weil ich vermute, dass er falsch ist.
>  
> Also ich schau den Fall an, dass die erste Kugel eine Rot
> ist, die zweite Kugel Blau
>  Total sind 20 Kugeln verfügbar, davon 2 Rot also
> [mm]\bruch{2}{20}[/mm]
>  Nun da die Kugel nicht zurückgelegt wird, sind es total
> nur noch 19 Kugeln, davon sind 2 blau, also [mm]\bruch{2}{20}[/mm]
>  

ok - und das erklärt dann die Summanden in:
$ [mm] P(E)=2\cdot{}(\bruch{2}{20}\cdot{}\bruch{2}{19}+\bruch{2}{20}\cdot{}\bruch{6}{19}+\bruch{2}{20}\cdot{}\bruch{10}{19}+\bruch{2}{20}\cdot{}\bruch{6}{19}+\bruch{2}{20}\cdot{}\bruch{10}{19}+\bruch{6}{20}\cdot{}\bruch{10}{19})=\bruch{64}{95} [/mm] $
Warum verdoppelst du dann das Ganze noch?

Gewöhn dir bitte an, deine Rechnungen zu kommentieren; dann ersparst du dir solche Nachfragen. ;-)

Insgesamt scheinst du aber auf dem richtigen Weg zu sein.
Daher ist deine Antwort: "nein - nicht doppelt so groß" wohl zutreffend.

Gruß informix

Bezug
                                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mo 23.03.2009
Autor: Dinker

Hallo

Also zurück zum ersten Fall:
Ich habe angenommen die erste Kugel ist Rot und die zweite Kugel blau. Jedoch könnte auch die erste Kugel blau sein und die zweite Rot, deshalb *2
Gruss Dinker



Bezug
                                        
Bezug
Wahrscheinlichkeit: Aufgabe b)
Status: (Antwort) fertig Status 
Datum: 10:27 Mi 25.03.2009
Autor: informix

Hallo Dinker,
>  
> Also zurück zum ersten Fall:
>  Ich habe angenommen die erste Kugel ist Rot und die zweite
> Kugel blau. Jedoch könnte auch die erste Kugel blau sein
> und die zweite Rot, deshalb *2

ok, demnächst also gleich die Erklärung. ;-)

Aufgabe b) habe ich nachgerechnet und bin zu denselben Ergebnissen gekommen.
Die Aufgabe ist unglücklich formuliert, ich kann nicht erkennen worauf sich [mm] \bruch{1}{15} [/mm] bezieht
entweder [mm] $\bruch{16}{15}P(E)=P(K)$ [/mm] dann bezieht es sich auf P(E)
oder [mm] P(E)=\bruch{14}{15}P(K) [/mm] dann bezieht es sich auf P(K)

Beide Ansätze führen allerdings nicht zu einem ganzzahligen Ergebnis, obwohl [mm] $x\in [/mm] N$ gelten muss.

Hast du inzwischen ein Ergebnis im Unterricht besprochen?

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]