matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Fr 28.03.2008
Autor: OJ.Boden

Aufgabe
In einer Kiste befinden sich N = 20 Teile, darunter sind K = 5 unbrauchbar. Es werden zur Kontrolle
n = 8 Teile entnommen. Wie groß ist die Wahrscheinlichkeit, daß sich darunter k = 3 unbrauchbare
Teile befinden?

Mein Problem ist, dass ich eine mathematische Null bin.
Wäre die Aufgabe mit zurücklegen, wäre es ja einfach. Die Wahrscheinlichkeit das ich ein unbrauchbares ziehe liegt bei 25 % und für ein brauchbares bei 75 %. [mm] 3\*\bruch{1}{4}+5*\bruch{3}{4}=4,5. [/mm] Das ganze durch 8 und ich liege bei einer Wahrscheinlichkeit von 56,25 %. Richtig?

Ohne Zurücklegen habe ich aber meine Probleme. Nehmen wir mal an ich ziehe die 3 unbrauchbaren. Das wäre dann [mm] \bruch{5}{20}+\bruch{4}{19}+\bruch{3}{18}. [/mm] Kann ich jetzt einfach so weitermachen und die 5 brauchbaren aus den restlichen 17 Stück ziehen? [mm] \bruch{15}{17}+\bruch{14}{16}+\bruch{13}{15}+\bruch{12}{14}+\bruch{11}{13}. [/mm]

Irgendwie glaube ich nämlich, dass ich mit dieser Überlegung komplett falsch liege.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Fr 28.03.2008
Autor: abakus


> In einer Kiste befinden sich N = 20 Teile, darunter sind K
> = 5 unbrauchbar. Es werden zur Kontrolle
>  n = 8 Teile entnommen. Wie groß ist die
> Wahrscheinlichkeit, daß sich darunter k = 3 unbrauchbare
>  Teile befinden?
>  Mein Problem ist, dass ich eine mathematische Null bin.
>  Wäre die Aufgabe mit zurücklegen, wäre es ja einfach. Die
> Wahrscheinlichkeit das ich ein unbrauchbares ziehe liegt
> bei 25 % und für ein brauchbares bei 75 %.
> [mm]3\*\bruch{1}{4}+5*\bruch{3}{4}=4,5.[/mm] Das ganze durch 8 und
> ich liege bei einer Wahrscheinlichkeit von 56,25 %.
> Richtig?

Nein. Für die Zugreihenfolge u-u-u-b-b-b-b-b wäre die Wahrscheinlichkeit
[mm] 0,25*0,25*0,25*0,75*0,75*0,75*0,75*0,75=0,25^3*0,75^3 [/mm]
Das ist aber nicht die einzige Mögliche Reihenfolge, um 3-mal u und 5-mal b zu ziehen.
Dafür gibt es [mm] \vektor{8 \\ 3} [/mm] Möglichkeiten.Die Wahrscheinlichkeit wäre [mm] \vektor{8 \\ 3}*0,25^3*0,75^3. [/mm]
(Es handelt sich dabei um eine Binomialverteilung mit n=8, k=3 und p=0,25).



>  
> Ohne Zurücklegen habe ich aber meine Probleme. Nehmen wir
> mal an ich ziehe die 3 unbrauchbaren. Das wäre dann
> [mm]\bruch{5}{20}+\bruch{4}{19}+\bruch{3}{18}.[/mm] Kann ich jetzt
> einfach so weitermachen und die 5 brauchbaren aus den
> restlichen 17 Stück ziehen?
> [mm]\bruch{15}{17}+\bruch{14}{16}+\bruch{13}{15}+\bruch{12}{14}+\bruch{11}{13}.[/mm]
>  
> Irgendwie glaube ich nämlich, dass ich mit dieser
> Überlegung komplett falsch liege.

Gut dass du zweifelst. Die Summe dieser ganzen Werte wäre größer als 1.
Beim beschriebenen Ziehen ohne Zurücklegen handelt es sich um eine []hypergeometrische Verteilung.

Viele Grüße
Abakus

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Fr 28.03.2008
Autor: OJ.Boden

Oha, meine Mathe-Fähigkeiten liegen also wirklich bei Null. Schonmal vielen Dank für die extreme Hilfe.

Nochmal zum Problem mit Zurücklegen. Das mit der Binomialverteilung habe ich nun verstanden. Ihr Lösungsergebniss war [mm] \vektor{8 \\ 3}*0,25^3*0,75^3. [/mm]  Müsste es nicht aber [mm] \vektor{8 \\ 3}*0,25^3*0,75^5 [/mm] sein oder interpretiere ich da mein Tafelwerk schon wieder falsch? Ihre Wahrscheinlichkeit beträge dann 36,91 % und meins 20,76%

Bei dem Problem ohne Zurücklegen komme ich nun auf dieses Ergebniss.

P = [mm] (\vektor{5\\ 3}*\vektor{15 \\ 5})/\vektor{20\\ 8} [/mm]
P = 23,84 %

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Fr 28.03.2008
Autor: rabilein1

Unabhängig von dir habe ich das gleiche Ergebnis raus: [mm] \bruch{77}{323}=0.238 [/mm]

Die einzelnen Schritte dahin sind:
Zunächst mal tust du so, als ergäben die ersten drei Ziehungen die 3 Unbrauchbaren und die nächsten fünf Ziehungen die 5 Brauchbaren.

Und dann überlegst du dir, in wie viele Reihenfolgen du die acht gezogenen Teile legen kannst.

Als dritten Schritt musst du dann überlegen, dass du die Unbrauchbaren bzw. der Brauchbaren hinsichtlich der Reihenfolge untereinander austauschen könntest.

Nun hast du einen ellenlangen Bruch. Da kannst du viel kürzen, und am Ende kommt raus:
[mm] \bruch{77}{323} [/mm]  <-- siehe oben



Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Sa 29.03.2008
Autor: abakus


> Oha, meine Mathe-Fähigkeiten liegen also wirklich bei Null.
> Schonmal vielen Dank für die extreme Hilfe.
>  
> Nochmal zum Problem mit Zurücklegen. Das mit der
> Binomialverteilung habe ich nun verstanden. Ihr
> Lösungsergebniss war [mm]\vektor{8 \\ 3}*0,25^3*0,75^3.[/mm]  Müsste
> es nicht aber [mm]\vektor{8 \\ 3}*0,25^3*0,75^5[/mm] sein oder

Sicher. Habe mich leider verschrieben.
Gruß Abakus


> interpretiere ich da mein Tafelwerk schon wieder falsch?
> Ihre Wahrscheinlichkeit beträge dann 36,91 % und meins
> 20,76%
>  
> Bei dem Problem ohne Zurücklegen komme ich nun auf dieses
> Ergebniss.
>  
> P = [mm](\vektor{5\\ 3}*\vektor{15 \\ 5})/\vektor{20\\ 8}[/mm]
>  P =
> 23,84 %


Bezug
                                
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Sa 29.03.2008
Autor: OJ.Boden

Sehr schön. Dann bin ich vorerst im Bilde. Vielen Dank euch beiden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]