matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Wahrscheinlichkeit
Wahrscheinlichkeit < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:15 Sa 08.09.2007
Autor: kleine_Frau

Aufgabe
Aus den Ziffern 0,1,2,3,4,5,6,7,8 und 9 soll zufällig eine fünfstellige Zahl gebildet werden, die auch mit einer Null beginnen darf. Wie groß ist die Wahrscheinlichkeit, dass alle fünf Ziffern verschieden sind?

Vom Lehrer haben wir die Lösung bekommen: 0,302.
Aber ich komme nicht auf den Rechenweg.


Ich habe im Unterricht die Pfadregel für Baumdiagramme kennengelernt.

Außerdem kenne ich Formel zur Berechnung der möglichen Erbenisse bei geordneten Stichproben mit zurücklegen $ [mm] (n^k), [/mm] $ geordneten Stichproben ohne zurücklegen $ [mm] \bruch{n!}{(n-k)!} [/mm] $ und ungeordnete Stichproben ohne zurücklegen $ [mm] \vektor{n\\ k} [/mm] $

Außerdem hatten wir eine Aufgabe, bei der wir die Wahrscheinlichkeit berechnet haben, beim Lotto 4 richtige zu haben. Das war eine Formel:
$ [mm] \bruch{\vektor{6\\ 4}\cdot{}\vektor{43 \\ 2}}{\vektor{49 \\ 6}} [/mm] $

Leider haben wir hierfür keine allgemeine Regel oder Formel genannt, sondern nur einmal diese Aufgabe so gerechnet. Bei Wikipedia gibt es eine allgemeine Formel dafür. Allerdings haben die andere Variablen benutzt. Deswegen steig ich da nicht durch.

Ich vermute, dass mir das helfen könnte, komme aber nicht drauf wie. Kann mir wer weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Hinweis
Status: (Antwort) fertig Status 
Datum: 11:24 Sa 08.09.2007
Autor: Loddar

Hallo kleine_Frau!


Gehen wir hier ganz einfach vor. Die Wahrscheinlichkeit wird berechnet durch:
$$P \ = \ [mm] \bruch{\text{günstige Ereignisse}}{\text{mögliche Ereignisse}}$$ [/mm]
Wieviele Varianten gibt es denn, aus den jeweils 10 Ziffern eine 5-stellige Zahl zu erstellen?

Und wieviel Möglichkeiten gibt es, dass diese 5 Ziffern unterschiedlich sind?

Für die 1. Stelle sind das 10 Möglichkeiten, für die 2. Stelle verbleiben dann noch 9 Ziffern usw.


Kommst Du damit weiter?


Gruß
Loddar


Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 08.09.2007
Autor: kleine_Frau


> Wieviele Varianten gibt es denn, aus den jeweils 10 Ziffern
> eine 5-stellige Zahl zu erstellen?

n= 10 und k=5
[mm] n^{k} [/mm] = 100000


> Und wieviel Möglichkeiten gibt es, dass diese 5 Ziffern
> unterschiedlich sind? Für die 1. Stelle sind das 10 Möglichkeiten, für die 2.
> Stelle verbleiben dann noch 9 Ziffern usw.

10! = 3628800

Als Lösung wurde angegeben: 184476.
Mit den beiden Ergebnissen komme ich aber nicht auf diese Lösung, oder? Jedenfalls wüsste ich nicht wie

Bezug
                        
Bezug
Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 08.09.2007
Autor: rabilein1


> Als Lösung wurde angegeben: 184476.

Auf welche Aufgabe bezieht sich das?

Die höchste 5-stellige Zahl ist 99999. Wenn du noch die 00000 hinzu rechnest, dann gibt es allerhöchstens 100000 Kombinationsmöglichkeiten.

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Sa 08.09.2007
Autor: Somebody


> > Wieviele Varianten gibt es denn, aus den jeweils 10 Ziffern
> > eine 5-stellige Zahl zu erstellen?
>  n= 10 und k=5
>  [mm]n^{k}[/mm] = 100000
>  
>
> > Und wieviel Möglichkeiten gibt es, dass diese 5 Ziffern
> > unterschiedlich sind? Für die 1. Stelle sind das 10
> Möglichkeiten, für die 2.
> > Stelle verbleiben dann noch 9 Ziffern usw.
>  10! = 3628800

$5$ Ziffern kannst Du aus den $9$ unter Berücksichtigung der Reihenfolge und ohne Wiederholungen auf [mm] $\frac{10!}{(10-5)!}$ [/mm] Arten auswählen. D.h. die erste Ziffer einer solchen Zahl kannst Du auf $10$ Arten, die zweite noch auf $9, [mm] \ldots, [/mm] $ die fünfte noch auf $6$ Arten auswählen. Ergibt insgesamt [mm] $10\cdot 9\cdot 8\cdot 7\cdot [/mm] 6$ (oder, eben: [mm] $\frac{10!}{(10-5)!}$) [/mm] Möglichkeiten.

Damit ist die gesuchte Wahrscheinlichkeit, eine solche 5-stellige Zahl mit verschiedenen Ziffern auszuwählen, gleich
[mm]\mathrm{P}(\text{alle Ziffern verschieden}) =\frac{\text{günstige Fälle}}{\text{mögliche Fälle}}=\frac{10\cdot 9\cdot 8\cdot 7\cdot 6}{10^5}=0.3024[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]