matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungWahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitsrechnung" - Wahrscheinlichkeit
Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Do 23.02.2006
Autor: barlip

HI
Brauche Hilfe um diese Aufgabe zu lösen:
Jemand greift in zwei Tüten mit Gummibärchen.
Aus der einen zieht er 3 Bärchen heraus, in dieser Tüte sind 30% rote Bärchen vorhanden.
Aus einer anderen zieht er 2 Bärchen heraus, diese Tüte ist zu 75% mit
roten Bärchengefüllt.

Wie hoch ist nun die Wahrscheinlich keit, dass genau 1 rotes Bärchen gezogen wird?
Mindestens ein rotes Bärchen gezogen wird ?
Zwei Bärchen gezogen werden?

Ich weiß nicht wie ich diese beiden Wahrscheinlichkeiten zusammenbekomme?
danke



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Do 23.02.2006
Autor: Pi3141

Erst einmal willkommen im Matheraum

1. Hier geht es um die Wahrscheinlichkeit, dass genau ein rotes Gummibärchen gezogen wird.
Die Chance, dass aus der ersten Tüte genau ein rotes Bärchen gezogen wird, ist [mm] 0.3^{3}, [/mm] die Chance, dass Chance, dass keines gezogen wird, ist [mm] 0.7^{3}. [/mm]
Bei der zweiten Tüte gilt analog [mm] 0.75^{2} [/mm] dass genau ein rotes gezogen wird und [mm] 0.25^{2}, [/mm] dass alle nicht rot sind. Nun kombinieren die Wahrscheinlichkeiten, da wir ja wissen wollen, wie wahrscheinlich es ist, dass zuerst 1 und danach 0 oder zuerst 0 und danach 1 rotes Gummibärchen gezogen wird. Die Wahrscheinlichkeit dafür ist dann [mm] 0.3^{3}*0.25^{2} [/mm] + [mm] 0.7^{3}*0.25^{2}. [/mm]

2. Hier geht es darum, dass mindestens ein rotes Gummibärchen gezogen wird.
Das rechnest du am Besten damit, dass du die Gegenwahrscheinlichkeit nimmst, also dass keine rotes Bärchen gezogen wird. Dann musst du nur [mm] 0.7^{3} [/mm] (kein rotes in der ersten Tüte) mit [mm] 0.25^{2} [/mm] (kein rot im zweiten) multiplizieren und dann von 1 abziehen.

3. Geht es hier darum, dass mindestens 2 rote oder genau 2 rote gezogen werden?
Wenn hier nach dem genau gesucht wird, musst die Wahrscheinlichkeiten für diese Kombinationen addieren: (0,2), (1,1) und (2,0).
Wenn hier nach mindestens gesucht ist, nimmst du wieder 1-(Chance kein rotes)-(Chance genau ein rotes).
Hoffe ich konnte dir helfen.

Bezug
                
Bezug
Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 Fr 24.02.2006
Autor: barlip

Hi
Leider verstehe ich dein Weg nicht.
Wie kommst du auf [mm] 0.3^3 [/mm] wenn ich aus einer Tüte mit mit 30%
roten Bärchen mit 3 Versuchen eins erwischen will.
Ich dachte ich muss dan
0.3 * 0.7 * 0.7 rechnen und das Ganze nochmal * 3
rechnen da es 3 Möglichkeiten gibts nur ein Bärchen zu bekommen.........
Und dann mulipliziere ich dieses Ergebnis mit der Wahrscheinlichkeit, dass
ich aus der anderen Tüte kein rotes Bärchen herausziehen.
also Ergebnis * [mm] 0.25^2 [/mm]  ???????richtig

danke

Bezug
                        
Bezug
Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 25.02.2006
Autor: Zwerglein

Hi, barlip,

>  Ich dachte ich muss dann
> 0.3 * 0.7 * 0.7 rechnen und das Ganze nochmal * 3
>  rechnen da es 3 Möglichkeiten gibts nur ein Bärchen zu
> bekommen.........
>  Und dann mulipliziere ich dieses Ergebnis mit der
> Wahrscheinlichkeit, dass
>  ich aus der anderen Tüte kein rotes Bärchen herausziehen.
>  also Ergebnis * [mm]0.25^2[/mm]  ???????richtig

Richtig - und dann natürlich noch umgekehrt: [mm] 0,7^{3}*(2*0,75*0,25) [/mm]
und beide Zahlen werden addiert.

Was mich bei der Aufgabe nur ziemlich stört, ist die Tatsache, dass man von einer Bernoulli-Kette ausgeht! Eine "normale" Bärchentüte enthält aber doch niemals so viele Bärchen, dass sich die Wahrscheinlichkeiten nicht von Zug zu Zug ändern.  Es sei denn, man zieht "mit Zurücklegen" - aber wer tut das schon bei Gummibärchen!

Trotzdem wird's wohl so gemeint sein, wie Du die Aufgabe begonnen hast!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]