matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikWahrheit der Aussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Wahrheit der Aussagen
Wahrheit der Aussagen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahrheit der Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mo 19.10.2009
Autor: MontBlanc

Aufgabe
Welche der folgenden Aussagen ist wahr ?

(a) [mm] x^2-5x+6=0 \Rightarrow [/mm] x=2
(b) [mm] x^2-5x+6=0 \Leftarrow [/mm] x=3
(c) [mm] x^2-5x+6=0 \gdw [/mm] (x=2 oder x=3)
(d) Damit [mm] x^2-5x+6 [/mm] gleich null ist, ist es nötig, dass x=3
(e) x=3 falls [mm] x^2-5x+6=0 [/mm]
(f) x=3 nur falls [mm] x^2-5x+6=0 [/mm]
(g) x=1 falls [mm] x^2-2x+1=0 [/mm]

Hi,

also das wären meine Antworten:

(a) ist falsch, da x=3 auch möglich wäre
(b) ist wahr, weil x=3 eine Lösung der Gleichung ist
(c) ist wahr, wenn man die Umformungen (Lösung) macht, sind alle Aussagen äquivalent.
(d) ist falsch, weil auch x=2 eine Lösung wäre
(e) ist falsch, weil auch x=2 Lösung wäre
(f)  ist wahr
(g) ist falsch

Könnte dort jemand mal drüber schauen ?
Ich habe kein gutes Gefühl dabei, ich habe ein Problem zu verstehen, in welche Richtung die Implikationspfeile denn nun zeigen dürfen.

Beispielsweise:

Welche reellen Zahlen x erfüllen folgende Gleichung [mm] x^2-3x+2=0 [/mm]

[mm] x^2-3x+2=0 \Rightarrow [/mm] (x-1)*(x-2)=0 [mm] \Rightarrow [/mm] x=1 oder x=2

Das ist laut meinem Skript nicht richtig, weil das nicht zeigt, dass x=1 oder x=2 die GLeichung lösen. Viel mehr müsste das umgekehrte gezeigt werden. Das ist in diesem Fall möglich in dem man einfach [mm] \gdw [/mm] schreibt. Aber bei komplizierteren Problemen geht das nicht mehr. Warum ist das so ? Es ist mir noch kein Licht aufgegangen.

Lg,

exeqter

        
Bezug
Wahrheit der Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mo 19.10.2009
Autor: fred97


> Welche der folgenden Aussagen ist wahr ?
>  
> (a) [mm]x^2-5x+6=0 \Rightarrow[/mm] x=2
>  (b) [mm]x^2-5x+6=0 \Leftarrow[/mm] x=3
>  (c) [mm]x^2-5x+6=0 \gdw[/mm] (x=2 oder x=3)
>  (d) Damit [mm]x^2-5x+6[/mm] gleich null ist, ist es nötig, dass
> x=3
>  (e) x=3 falls [mm]x^2-5x+6=0[/mm]
>  (f) x=3 nur falls [mm]x^2-5x+6=0[/mm]
>  (g) x=1 falls [mm]x^2-2x+1=0[/mm]
>  Hi,
>  
> also das wären meine Antworten:
>  
> (a) ist falsch, da x=3 auch möglich wäre
>  (b) ist wahr, weil x=3 eine Lösung der Gleichung ist
>  (c) ist wahr, wenn man die Umformungen (Lösung) macht,
> sind alle Aussagen äquivalent.
>  (d) ist falsch, weil auch x=2 eine Lösung wäre
>  (e) ist falsch, weil auch x=2 Lösung wäre


Bis hier ist alles O.K.


>  (f)  ist wahr

Denk nochmal drüber nach !

>  (g) ist falsch


Wieso ?   [mm]x^2-2x+1=(x-1)^2[/mm]  !!

>  
> Könnte dort jemand mal drüber schauen ?
>  Ich habe kein gutes Gefühl dabei, ich habe ein Problem zu
> verstehen, in welche Richtung die Implikationspfeile denn
> nun zeigen dürfen.
>
> Beispielsweise:
>  
> Welche reellen Zahlen x erfüllen folgende Gleichung
> [mm]x^2-3x+2=0[/mm]
>  
> [mm]x^2-3x+2=0 \Rightarrow[/mm] (x-1)*(x-2)=0 [mm]\Rightarrow[/mm] x=1 oder
> x=2
>  
> Das ist laut meinem Skript nicht richtig, weil das nicht
> zeigt, dass x=1 oder x=2 die GLeichung lösen. Viel mehr
> müsste das umgekehrte gezeigt werden. Das ist in diesem
> Fall möglich in dem man einfach [mm]\gdw[/mm] schreibt.

So ist es !


> Aber bei
> komplizierteren Problemen geht das nicht mehr. Warum ist
> das so ? Es ist mir noch kein Licht aufgegangen.

FRED


>  
> Lg,
>  
> exeqter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]