matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Wahl geschickter Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Wahl geschickter Folge
Wahl geschickter Folge < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wahl geschickter Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Do 25.08.2011
Autor: physicus

Hallo,


Meine Frage ist ziemlich grundlegender Natur und ich bin mir sicher, dass dies Analysis 1 ist, allerdings bin ich mir nicht sicher, ob meine Argumentation stimmt:

Nehmen wir an, dass wir [mm] l \in X^\* [/mm] der normale Dualraum. Aus der Definition der Norm sollte nun folgen, dass es ein Element [mm] x \in X [/mm] mit [mm] \parallel x \parallel_X = 1 [/mm], so dass:

[mm] |l(x)| > \bruch{\parallel l \parallel_{X^\*}}{c} , c \in \IN [/mm]

Das [mm] x [/mm] die Norm 1 hat, ist klar( Dies folgt aus der Definition) Folgt die Ungleichung aus folgendem:

Wenn ich eine Menge [mm] M [/mm] habe, mit [mm]sup(M) < \infty [/mm] dann weiss ich folgendes:
[mm]\forall \epsilon >0 \exists m \in M : sup(M)-\epsilon < m [/mm]
Naja und dann müsste ich ein [mm]c \in \IN [/mm] so wählen, dass

[mm]sup(M)-\epsilon > \bruch{sup(M)}{c} [/mm]

Sind meine Überlegung korrekt?

Gruss

physicus

        
Bezug
Wahl geschickter Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 25.08.2011
Autor: Dath

An sich ja schon... Aber wozu brauchst du das?

Bezug
                
Bezug
Wahl geschickter Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Do 25.08.2011
Autor: physicus

Hallo Dath

Weil ja oft Widerspruchsbeweise so geführt werden. Deshalb brauch ich das. Um genau zu sein, wurde so ein Beweis in der Vorlesung geführt und ich wollte nur sicher sein, dass meine Argumentation richtig ist.

Gruss

physicus

Bezug
        
Bezug
Wahl geschickter Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Fr 26.08.2011
Autor: fred97


> Hallo,
>  
>
> Meine Frage ist ziemlich grundlegender Natur und ich bin
> mir sicher, dass dies Analysis 1 ist, allerdings bin ich
> mir nicht sicher, ob meine Argumentation stimmt:
>  
> Nehmen wir an, dass wir [mm]l \in X^\*[/mm] der normale Dualraum.
> Aus der Definition der Norm sollte nun folgen, dass es ein
> Element [mm]x \in X[/mm] mit [mm]\parallel x \parallel_X = 1 [/mm], so dass:
>  
> [mm]|l(x)| > \bruch{\parallel l \parallel_{X^\*}}{c} , c \in \IN[/mm]


Wo kommt das c her ? ????

Es sollte [mm]l \ne 0 [/mm] sein. Dann gilt:  

[mm] $\bruch{\parallel l \parallel_{X^\*}}{c}<\parallel [/mm] l [mm] \parallel_{X^\*}$ [/mm]  für jedes c [mm] \ge [/mm] 2.

Zu einem solchen c gibt es dann ein x [mm] \in [/mm] X mit $ [mm] \parallel [/mm] x [mm] \parallel_X [/mm] = 1 $ und

                    [mm] $\bruch{\parallel l \parallel_{X^\*}}{c}<|l(x)|$ [/mm]

FRED

>
> Das [mm]x[/mm] die Norm 1 hat, ist klar( Dies folgt aus der
> Definition) Folgt die Ungleichung aus folgendem:
>  
> Wenn ich eine Menge [mm]M[/mm] habe, mit [mm]sup(M) < \infty[/mm] dann weiss
> ich folgendes:
> [mm]\forall \epsilon >0 \exists m \in M : sup(M)-\epsilon < m[/mm]
>  
> Naja und dann müsste ich ein [mm]c \in \IN[/mm] so wählen, dass
>  
> [mm]sup(M)-\epsilon > \bruch{sup(M)}{c}[/mm]
>  
> Sind meine Überlegung korrekt?
>  
> Gruss
>  
> physicus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]