matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenWärmeleitung unsym. Randbed.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Wärmeleitung unsym. Randbed.
Wärmeleitung unsym. Randbed. < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wärmeleitung unsym. Randbed.: Analytische Lösung
Status: (Frage) überfällig Status 
Datum: 09:19 Fr 05.08.2016
Autor: Ferdinand86

Aufgabe
Für die Wärmeleitgleichung im ein-dimensionalen Fall [mm] \bruch{\partial T}{\partial t} [/mm] = [mm] \bruch{k}{\rho c} \bruch{\partial^2 T}{\partial x^2} [/mm] wird die analytische Lösung mit den folgenden Randbedingungen gesucht. (Den Ursprung des Kordinatensystems habe ich an das untere Ende der Platte gelegt).

RB1: -k [mm] \bruch{\partial T(0,t)}{\partial x} [/mm] = [mm] h_u (T_{\infty,u} [/mm] - T(0,t))

RB2: -k [mm] \bruch{\partial T(d,t)}{\partial x} [/mm] = [mm] h_o (T_{\infty,o} [/mm] - T(d,t))

Anfangswert: T(x,0) = [mm] T_1 [/mm]

Es handelt sich um eine unendlich ausgedehnte Platte mit der Dicke d. Auf der Ober- und der Unterseite wird diese mit mit unterschiedlicher heißer und schneller Luft beblasen. Die Lufttemperaturen sind [mm] T_{\infty,u} [/mm] respektive [mm] T_{\infty,o} [/mm] mit den dazugehörigen Wärmeübergangskoeffizienten [mm] h_u [/mm] und [mm] h_o. [/mm]

Hallo zusammen,

ich bin neu hier im Forum und brauche im Rahmen eines Projekts Eure Hilfe.  

Ich benötige für ein Programm die Gleichung, um die instationäre Wärmeverteilung in einer dünnen Platte zu berechnen. Für den symmetrischen Fall, in welchem oben und unten gleiche Lufttemperaturen mit gleichen Wärmeübergangskoeffizienten herrschen, habe ich Lösungen gefunden. Leider aber nicht für diesen Fall. Es wird jedoch an mehreren Stellen erwähnt, dass auch hierfür eine analytische Lösung vorliegt.

Mein Wissen über Partielle DGL ist verhältnismäßig gering und ich würde sicherlich sehr lange brauchen, mir das Können zum Lösen dieser Gleichung anzueignen. Ich hoffe daher von Euch Unterstützung zu bekommen.

Mit besten Grüßen
Ferdinand

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Ich habe die Frage in einem weniger mathematischen und mehr thermodynamischen Ansatz bereits in einem anderen Forum gestellt.
http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=221479

        
Bezug
Wärmeleitung unsym. Randbed.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Sa 20.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]