matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikW.-Raum konstruieren: richtig?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - W.-Raum konstruieren: richtig?
W.-Raum konstruieren: richtig? < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W.-Raum konstruieren: richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Mi 11.07.2012
Autor: sqflo

Aufgabe
1.) Es Sei [mm] $\lambda [/mm] >0$. Konstruieren Sie eine Menge [mm] $\Omega$, [/mm] ein Wahrscheinlichkeitsmaß P auf [mm] $(\Omega, \mathcal{P}(\Omega))$ [/mm] und eine diskrete Zufallsvariable $X: [mm] \Omega \mapsto \mathbb{R}$ [/mm] mit [mm] $P^X=Pois(\lambda)$ [/mm]

2.) Konstruieren Sie eine unbeschränkte Zufallsvariable [mm] $X\in L^1$ [/mm]


Hallo, folgende Lösung habe ich mir für die oben stehenden Aufgaben überlegt:

[mm] $\Omega [/mm] := [mm] \mathbb{N}_0=\{0,1,2,3,...\}$ [/mm] und $X := Id$.

Dann würde nämlich gelten:
[mm] $\forall n\in\mathbb{N}: P^X(\{n\})=P(X^{-1}(\{n\}))=P(\{n\})=e^{-\lambda}*\frac{\lambda^n}{n!} [/mm]

Also ist, wie verlangt, X Poisson-verteilt.

Außerdem ist X unbbeschränkt wie gefordert und der Erwartungswert ist = 1, somit ist [mm] $X\in L^1$. [/mm]



Das sollte doch richtig sein, oder?


lg
flo


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
W.-Raum konstruieren: richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Di 24.07.2012
Autor: kamaleonti

Hallo,

es folgt eine späte Antwort, aber vielleicht bist Du ja noch interessiert.

> 1.) Es Sei [mm]\lambda >0[/mm]. Konstruieren Sie eine Menge [mm]\Omega[/mm],
> ein Wahrscheinlichkeitsmaß P auf [mm](\Omega, \mathcal{P}(\Omega))[/mm]
> und eine diskrete Zufallsvariable [mm]X: \Omega \mapsto \mathbb{R}[/mm]
> mit [mm]P^X=Pois(\lambda)[/mm]
>  
> 2.) Konstruieren Sie eine unbeschränkte Zufallsvariable
> [mm]X\in L^1[/mm]
>  
> Hallo, folgende Lösung habe ich mir für die oben
> stehenden Aufgaben überlegt:
>  
> [mm]\Omega := \mathbb{N}_0=\{0,1,2,3,...\}[/mm] und [mm]X := Id[/mm].

Das Wahrscheinlichkeitsmaß auf [mm] \Omega [/mm] wählst du gerade als die Poissonverteilung.

>  
> Dann würde nämlich gelten:
>  [mm]$\forall n\in\mathbb{N}: P^X(\{n\})=P(X^{-1}(\{n\}))=P(\{n\})=e^{-\lambda}*\frac{\lambda^n}{n!}[/mm]

[ok]

>  
> Also ist, wie verlangt, X Poisson-verteilt.
>  
> Außerdem ist X unbbeschränkt wie gefordert und der
> Erwartungswert ist = 1, somit ist [mm]X\in L^1[/mm].

Wenn [mm] L^1=L^1(\Omega, [/mm] P), dann hast Du Recht :-)


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]