matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikW-keit Skatspiel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Kombinatorik" - W-keit Skatspiel
W-keit Skatspiel < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

W-keit Skatspiel: Idee richtig?
Status: (Frage) beantwortet Status 
Datum: 18:10 Do 18.11.2010
Autor: override88

Aufgabe
Beim Skat erhält jeder der drei Spieler 10 Karten aus einem (gut gemischten) Stapel mit 32 Karten, wobei der Stapel genau 4 Asse enthält. Berechnen Sie die Wahrscheinlichkeiten der folgenden Ereignisse:
a) Der erste Spieler erhält alle vier Asse.
b) Ein Spieler erhält alle vier Asse.


Mir ist hier nicht ganz klar wie ich den Unterschied zwischen der ERSTE Spieler und EIN Spieler berücksichtige.
Ich habe mir überlegt, dass bei a) der Ergebnisraum die Kartenverteilungen auf ALLE 3 Spieler ist und bei b) die Kartenverteilungen auf EINEN Spieler.

a) Hier habe ich mir die Anzahl der günstigen Fälle wie folgt überlegt: Der erste Spieler bekommt alle 4 Asse und noch 6 Karten aus den restlichen 28, weiter bekommt dann der 2. Spieler 10 Karten aus den verbleibenden 22 und der 3. Spieler 10 Karten aus den verbleibenden 12, also erhalte ich für die W-keit:
[mm] \bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6} * \vektor{22 \\ 10} * \vektor{12 \\ 10}}{\vektor{32 \\ 10} * \vektor{22 \\ 10} * \vektor{12 \\ 10}} [/mm] = [mm] \bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6}}{\vektor{32 \\ 10}} \approx [/mm] 0.58%
Ist das richtig?

b) Hier habe ich im Zähler 3 Fälle addiert.
1. den Fall aus a) +
2. der 2. Spieler bekommt die 4 Asse, die anderen nicht +
3. der 3. Spieler bekommt die 4 Asse, die anderen nicht, also
[mm] \bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6} * \vektor{22 \\ 10} * \vektor{12 \\ 10} + \vektor{28 \\ 10} * \vektor{4 \\ 4} * \vektor{22 \\ 6} * \vektor{12 \\ 10} + \vektor{28 \\ 10} * \vektor{18 \\ 10} * \vektor{4 \\ 4} * \vektor{12 \\ 6}}{\vektor{32 \\ 10} * \vektor{22 \\ 10} * \vektor{12 \\ 10}} [/mm]
Hier käme aber (wenn ich mich nicht verrechnet habe) eine W-keit von 21 oder 22% heraus, kann das wirklich sein?? Finde es ein bisschen zu hoch.. Oder habe ich irgendwo einen Denkfehler?

        
Bezug
W-keit Skatspiel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:43 So 21.11.2010
Autor: luis52

Moin

> Beim Skat erhält jeder der drei Spieler 10 Karten aus
> einem (gut gemischten) Stapel mit 32 Karten, wobei der
> Stapel genau 4 Asse enthält. Berechnen Sie die
> Wahrscheinlichkeiten der folgenden Ereignisse:
>  a) Der erste Spieler erhält alle vier Asse.
>  b) Ein Spieler erhält alle vier Asse.
>  
> Mir ist hier nicht ganz klar wie ich den Unterschied
> zwischen der ERSTE Spieler und EIN Spieler
> berücksichtige.
>  Ich habe mir überlegt, dass bei a) der Ergebnisraum die
> Kartenverteilungen auf ALLE 3 Spieler ist und bei b) die
> Kartenverteilungen auf EINEN Spieler.
>  
> a) Hier habe ich mir die Anzahl der günstigen Fälle wie
> folgt überlegt: Der erste Spieler bekommt alle 4 Asse und
> noch 6 Karten aus den restlichen 28, weiter bekommt dann
> der 2. Spieler 10 Karten aus den verbleibenden 22 und der
> 3. Spieler 10 Karten aus den verbleibenden 12, also erhalte
> ich für die W-keit:
> [mm]\bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6} * \vektor{22 \\ 10} * \vektor{12 \\ 10}}{\vektor{32 \\ 10} * \vektor{22 \\ 10} * \vektor{12 \\ 10}}[/mm]
> = [mm]\bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6}}{\vektor{32 \\ 10}} \approx[/mm]
> 0.58%
>  Ist das richtig?

[ok]

>  
> b) Hier habe ich im Zähler 3 Fälle addiert.
>  1. den Fall aus a) +
>  2. der 2. Spieler bekommt die 4 Asse, die anderen nicht +
>  3. der 3. Spieler bekommt die 4 Asse, die anderen nicht,
> also
>  [mm]\bruch{\vektor{4 \\ 4} * \vektor{28 \\ 6} * \vektor{22 \\ 10} * \vektor{12 \\ 10} + \vektor{28 \\ 10} * \vektor{4 \\ 4} * \vektor{22 \\ 6} * \vektor{12 \\ 10} + \vektor{28 \\ 10} * \vektor{18 \\ 10} * \vektor{4 \\ 4} * \vektor{12 \\ 6}}{\vektor{32 \\ 10} * \vektor{22 \\ 10} * \vektor{12 \\ 10}}[/mm]
>  
> Hier käme aber (wenn ich mich nicht verrechnet habe) eine
> W-keit von 21 oder 22% heraus, kann das wirklich sein??
> Finde es ein bisschen zu hoch.. Oder habe ich irgendwo
> einen Denkfehler?

Der zweite Zaehlersummanden ist bereits falsch: Er lautet vielmehr [mm] $\binom{28}{10}\binom{4}{4}\binom{18}{6}\binom{12}{10}$. [/mm]


Warum multiplizierst du die Wahrscheinlichkeiten aus (a) nicht mit 3? Schliesslich hast du identische Wahsrscheinlichkeiten dafuer, dass Spieler 1, 2 oder 3 die vier Asse erhaelt.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]