matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTaschenrechnerVoyage 200_kubische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Taschenrechner" - Voyage 200_kubische Gleichung
Voyage 200_kubische Gleichung < Taschenrechner < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Taschenrechner"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Voyage 200_kubische Gleichung: Kubische Gleichung lösen
Status: (Frage) beantwortet Status 
Datum: 16:43 Mo 04.07.2011
Autor: Lisa333

Hallo Freunde,

nun benötige ich erneut eure Hilfe,

ich möchte folgende kubische Gleichung mit dem TI Voyage 200 lösen, nur noch weis ich nicht wie es geht.

Die Aufgabe lautet:

[mm] p=\bruch{1}{2}(1+\bruch{v}{10}) [/mm] (1- [mm] \bruch{v^2}{100}) [/mm] = 0.5

Danke im Voraus,

Lisa
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Voyage 200_kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Di 05.07.2011
Autor: leduart

Hallo
dazu braucht man keinen TR, man sieht sofort, dass v/10=0 eine Losung ist,
wenn man schreibt: [mm] $(1+\bruch{v}{10}) [/mm]  (1- [mm] \bruch{v^2}{100})-1 [/mm]  = 0
das ist auch die einzige Lösung.
Gruss leduart


Bezug
                
Bezug
Voyage 200_kubische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 05.07.2011
Autor: Lisa333

Dazu habe ich 2 vielleicht "dumme" Fragen.

1. woher weißt du dass, v/10=0, ist?

2. wenn ich nun diese Gleichung nach "v" auflösen möchte, wie mach ich das?

Danke,
Lisa

Bezug
                        
Bezug
Voyage 200_kubische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Di 05.07.2011
Autor: schachuzipus

Hallo Lisa333,

> Dazu habe ich 2 vielleicht "dumme" Fragen.
>
> 1. woher weißt du dass, v/10=0, ist?

Nun, du kannst doch die Ausgangsgleichung umschreiben:

[mm]\left(1+\frac{v}{10}\right)\cdot{}\left(1-\frac{v^2}{100}\right)=1[/mm]

Also [mm]\left(1+\frac{v}{10}\right)\cdot{}\left(1-\left[\frac{v}{10}\right]^2\right)=1[/mm]

Nun sieht man, dass für [mm]\frac{v}{10}=0[/mm] doch folgendes dasteht: [mm]1\cdot{}1=1[/mm], was offensichtlich wahr ist, also ist [mm]\frac{v}{10}=0[/mm] eine Lösung

>
> 2. wenn ich nun diese Gleichung nach "v" auflösen möchte,
> wie mach ich das?

Also bitte! [mm]\frac{v}{10}=0 \Rightarrow v=10\cdot{}0=0[/mm]

Einfacher: ein Bruch ist genau dann =0, wenn der Zähler =0 ist ...

>
> Danke,
> Lisa

Gruß

schachuzipus


Bezug
                
Bezug
Voyage 200_kubische Gleichung: weitere Lösungen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Di 05.07.2011
Autor: Al-Chwarizmi

Die Gleichung hat sehr wohl noch weitere (reelle)
Lösungen !
Um sie zu bestimmen, würde ich die Substitution
[mm] x:=\frac{10}{v} [/mm]  vorschlagen. Es entsteht eine einfache
kubische Gleichung, deren konstantes Glied ver-
schwindet. Die Lösung x=0 ist dann auch offen-
sichtlich, und man hat noch eine quadratische
Gleichung zu lösen.

Und an Lisa: den Rechner würde ich dann (nach
getaner Arbeit) zur Kontrolle benützen. Die Eingabe
in den Voyage sieht so aus:

solve(<Gleichung>,<Lösungsvariable>)

im vorliegenden Fall also:

solve((1+v/10)* ...... =1 , v)

LG   Al-Chw.

Bezug
                        
Bezug
Voyage 200_kubische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:58 Di 05.07.2011
Autor: schachuzipus

Holà Al,

> Die Gleichung hat sehr wohl noch weitere (reelle)
> Lösungen !
> Um sie zu bestimmen, würde ich die Substitution
> [mm]x:=\frac{10}{v}[/mm] vorschlagen. Es entsteht eine
> einfache kubische Gleichung, deren konstantes
> Glied verschwindet. Die Lösung x=0 ist dann auch
> offensichtlich, und man hat noch eine quadratische
> Gleichung zu lösen.

Man kann auch einfach ausmultiplizieren und [mm] $-\frac{1}{1000}v$ [/mm] ausklammern, dann bleibt neben $v=0$ direkt eine quadrat. Gleichung in v mit 2 reellen Lösungen ...


>
> LG Al-Chw.

Gruß

schachuzipus


Bezug
                                
Bezug
Voyage 200_kubische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:13 Di 05.07.2011
Autor: Al-Chwarizmi

Aloha schachuzipus,

mit der einfachen Substitution erspart man sich aber
mögliche Fehlerquellen beim Umgang mit den Brüchen.
Statt [mm] -\,\frac{v}{1000} [/mm] klammert man dann einfach -x aus.
Vor allem würde ich aber hoffen, dass jeder, der die
Gleichung löst, den Faktor 0.5 bzw. [mm] \frac{1}{2} [/mm] nicht mit dem
Rest "ausmultipliziert" ...

LG   Al
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Taschenrechner"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]