matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeutsche Mathe-OlympiadeVorbereitung Matheolympia
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Deutsche Mathe-Olympiade" - Vorbereitung Matheolympia
Vorbereitung Matheolympia < Deutsche MO < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vorbereitung Matheolympia: Vorbereitung Matheolympiade
Status: (Frage) beantwortet Status 
Datum: 01:24 Sa 24.10.2009
Autor: KingStone007

Also es geht um folg. Aufgabe:

Ermitteln Sie sämtliche reelen Zahlen c mit der Eigenschaft:

Die Ungleichung cxy <=x²+y² ist für alle reelen Zahlen x und y erfüllt.

Es handelt sich um eine Aufgabe aus einem vergangenen Wettbewerb.

Danke schonmal im Voraus,
David

        
Bezug
Vorbereitung Matheolympia: Antwort
Status: (Antwort) fertig Status 
Datum: 02:58 Sa 24.10.2009
Autor: Al-Chwarizmi


> Also es geht um folg. Aufgabe:
>  
> Ermitteln Sie sämtliche reelen Zahlen c mit der
> Eigenschaft:
>  
> Die Ungleichung cxy <=x²+y² ist für alle reelen Zahlen x
> und y erfüllt.
>  
> Es handelt sich um eine Aufgabe aus einem vergangenen
> Wettbewerb.
>  
> Danke schonmal im Voraus,
>  David


Hallo David,

hast du zu der Aufgabe schon irgendwelche Über-
legungen angestellt ?
Du könntest ja mal ein paar konkrete Zahlenwerte
für c wählen und ausprobieren, was du dann erhältst.
Ferner weisst du bestimmt, dass [mm] x^2 [/mm] stets [mm] \ge0 [/mm] ist,
falls x reell ist.
Verwende solche Ideen und stelle dann hier wenn
nötig konkretere Fragen !

übrigens:  "reell" und "reelle ....." haben ein
Doppel-"l"!


Früher gab es einen Witz:

"Reeler Wein" (mit nur einem "l") war ein Ausdruck
für das, was man als einen üblen Verschnitt oder
Panscherei bezeichnen könnte, im Gegensatz zu
einem "reellen" gut gekelterten Wein bekannter
Provenienz.

(Trotzdem sind heutige "reele" Weine oft besser
als damalige "reelle": Fortschritt der Technik)


LG    Al-Chw.



Bezug
                
Bezug
Vorbereitung Matheolympia: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Sa 24.10.2009
Autor: KingStone007

Naja erstmal danke für die tipps...
ich habe folgende Dinge gemacht und zwar hab ich umgeformt zu
entweder...

(c-2)xy<=(x-y)²   (1)

oder   (c+2)xy<=(x+y)²    (2)

Naja also c=2 und c=-2 sind ja schonmal lösung....

Weiter hatte ich dann vielleicht die Idee, dass man mit c Fallunterscheidung machen muss....also:

1.Fall: c>2, dann ist in (1) der Faktor (c-2)>0
           Für x=y kommt es dann aber zum Widerspruch....denn
           (c-2)x² <= (x-x)²=0
           Das Quadrat einer Zahl ist immer grössergleich null, also für |x|>0
           nicht erfüllt.
    
2.Fall: c<-2, dann ist in (2) der faktor (c+2)<0
           Für y=-x kommt es dann aber zum Widerspruch...denn
           -(c+2)x²<=0
           Da aber -(c+2)>0 also auch wegen x²>0 folgendes gilt:
           -(c+2)x²<=0, was für |x|>0 nicht erfüllt ist.

Mit den Fällen c<-2<0 und 2<c<0 komm ich dann nicht so recht zu Widersprüchen wenn es diese gibt...und wenn nicht weiß ich auch nicht wie ich die beweisen soll...

Mfg, David

Bezug
                        
Bezug
Vorbereitung Matheolympia: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Sa 24.10.2009
Autor: Al-Chwarizmi


> Naja erstmal danke für die tipps...
>  ich habe folgende Dinge gemacht und zwar hab ich umgeformt
> zu
> entweder...
>
> (c-2)xy<=(x-y)²   (1)
>  
> oder   (c+2)xy<=(x+y)²    (2)
>  
> Naja also c=2 und c=-2 sind ja schonmal lösung....   [ok]
>  
> Weiter hatte ich dann vielleicht die Idee, dass man mit c
> Fallunterscheidung machen muss....also:
>  
> 1.Fall: c>2, dann ist in (1) der Faktor (c-2)>0
>             Für x=y kommt es dann aber zum
> Widerspruch....denn
>             (c-2)x² <= (x-x)²=0
>             Das Quadrat einer Zahl ist immer grössergleich
> null, also für |x|>0
>             nicht erfüllt.   [ok]
>      
> 2.Fall: c<-2, dann ist in (2) der faktor (c+2)<0
>             Für y=-x kommt es dann aber zum
> Widerspruch...denn
> -(c+2)x²<=0
>             Da aber -(c+2)>0 also auch wegen x²>0
> folgendes gilt:
>             -(c+2)x²<=0, was für |x|>0 nicht erfüllt
> ist.     [ok]
>  
> Mit den Fällen c<-2<0 und 2<c<0     [verwirrt]

> komm ich dann nicht so
> recht zu Widersprüchen wenn es diese gibt...und wenn nicht
> weiß ich auch nicht wie ich die beweisen soll...
>  
> Mfg, David


Am Schluss meintest du wohl die Fälle

     -2<c<0 und  0<c<2

(und dann wäre da noch die Möglichkeit x=0 !)


Falls dir die Analysis mit Funktionen von zwei
Variablen vertraut ist, kannst du die Funktion
$\ [mm] F_c(x,y)=x^2+y^2-2\,c\,x\,y$ [/mm] auf globale
Minima überprüfen.

Sehr hilfreich wäre aber auch eine geeignete
Transformation des Koordinatensystems.

Die Formel dazu möchte ich dir aber (noch)
nicht verraten ...


Gruß    Al-Chw.


Bezug
                                
Bezug
Vorbereitung Matheolympia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 24.10.2009
Autor: KingStone007

Sorry ich hab keine Ahnung was das ist...
Ich bin erst 9.Klasse...
Kannst du mir das vielleicht erklären??

mfg, david

Bezug
                                        
Bezug
Vorbereitung Matheolympia: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 So 25.10.2009
Autor: KingStone007

Kann mir irgendwer bitte helfen??

mfg, david

Bezug
                                                
Bezug
Vorbereitung Matheolympia: Antwort
Status: (Antwort) fertig Status 
Datum: 13:07 So 25.10.2009
Autor: Al-Chwarizmi

Hallo David,

entschuldige, dass ich gar nicht beachtet hatte,
dass du in der 9. Klasse bist. Dann muss es natürlich
ohne solche Fachbegriffe gehen. Dies ist auch möglich.

Man kann die Ungleichung so schreiben:

       $\ [mm] x^2+y^2-c\,x\,y\ \ge\ [/mm] 0$

oder

       $\ [mm] \underbrace{x^2-c\,x\,y\red{\ +\,\frac{c^2}{4}\,y^2}}_{binomische Formel}+\,y^2\green{\,-\,\frac{c^2}{4}\,y^2}\ \ge\ [/mm] 0$

(das Prinzip der quadratischen Ergänzung kennst du
schon, oder ?)

Jetzt kannst du die linke Seite etwas umformen:

       $\ [mm] (.........)^2\,+\,(.........)*\,y^2\ \ge\ [/mm] 0$

Dies sollte weiterhelfen.


LG     Al-Chw.






Bezug
        
Bezug
Vorbereitung Matheolympia: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 12:53 So 25.10.2009
Autor: Loddar

Hallo David!


Forme Deine Ungleichung um nach:
[mm] $$x^2-c*xy+y^2 [/mm] \ [mm] \ge [/mm] \ 0$$
Wende nun die MBp/q-Formel an und betrachte die Wurzel.


Gruß
Loddar


Bezug
                
Bezug
Vorbereitung Matheolympia: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 So 25.10.2009
Autor: Al-Chwarizmi

Hallo Loddar,

> Forme Deine Ungleichung um nach:
>  [mm]x^2\red{\textbf{\,+\ }}c*xy+y^2 \ \ge \ 0[/mm]


macht zwar hier am Ende nichts aus, aber es sollte
lauten:

     [mm]x^2\blue{\textbf{\large{\,-\ }}}c*xy+y^2 \ \ge \ 0[/mm]


Gruß    Al


Bezug
                        
Bezug
Vorbereitung Matheolympia: ups ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 So 25.10.2009
Autor: Loddar

Hallo Al!


[daumenhoch] Danke fürs Aufpassen!


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsche Mathe-Olympiade"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]