Von der Norm zur Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen!
Ich bin auf der Suche nach einer Metrik, die sich von der [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm] ableitet. Da es sich hier um keine Übungsaufgabe handelt und auch wahrscheinlich nicht in der Klausur abgefragt wird, ist der Weg weniger Wichtig. Ich benötige die Metrik um mit ein paar Kommilitonen eine eigene Übungsaufgabe daraus zu basteln, in der wir die Stetigkeit von einer Funktion bezüglich verschiedener Metriken zu überprüfen lernen wollen.
die [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm] haben wir in der Vorlesung mit
[mm] \parallel f\parallel_{2}=\wurzel{\integral_{a}^{b} {f^{2}(x) dx}}
[/mm]
definiert.
Schönen Abend noch,
grasshead
Achja:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:55 Sa 16.07.2005 | Autor: | Hanno |
Hallo Grasshead!
Sei [mm] $\Vert\cdot\Vert$ [/mm] eine beliebige Norm auf einem unitären oder reellen Vektorraum $V$ (über [mm] $K=\IC\vee\IR$). [/mm] Dann wird durch [mm] $d(x,y)=\Vert x-y\Vert, x,y\in [/mm] V$ eine Metrik [mm] $d:V\times V\to\IR$ [/mm] induziert.
Beweis:
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $0=d(x,y)\gdw \Vert x-y\Vert=0\gdw x-y=0\gdw [/mm] x=y$.
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert=\vert -1\vert\Vert x-y\Vert [/mm] = [mm] \Vert y-x\Vert [/mm] = d(y,x)$.
- Für alle [mm] $x,y,z\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert [/mm] = [mm] \Vert x-z+z-y\Vert \leq \Vert x-z\Vert [/mm] + [mm] \Vert z-y\Vert [/mm] = d(x,z)+d(z,y)$.
Damit sind alle drei Bedingungen an eine Metrik erfüllt.
In deinem Falle kannst du also einfach eine Metrik $d$ über [mm] $d(f,g)=\sqrt{\integral_{a}^{b} (f(x)-g(x))^2 dx}$ [/mm] definieren.
Liebe Grüße,
Hanno
|
|
|
|