matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieVon der Norm zur Metrik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Von der Norm zur Metrik
Von der Norm zur Metrik < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von der Norm zur Metrik: Wie geht das?
Status: (Frage) beantwortet Status 
Datum: 20:49 Sa 16.07.2005
Autor: grasshead

Hallo zusammen!

Ich bin auf der Suche nach einer Metrik, die sich von der [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm] ableitet. Da es sich hier um keine Übungsaufgabe handelt und auch wahrscheinlich nicht in der Klausur abgefragt wird, ist der Weg weniger Wichtig. Ich benötige die Metrik um mit ein paar Kommilitonen eine eigene Übungsaufgabe daraus zu basteln, in der wir die Stetigkeit von einer Funktion bezüglich verschiedener Metriken zu überprüfen lernen wollen.

die  [mm] \parallel [/mm] · [mm] \parallel_{2}-Norm [/mm]  haben wir in der Vorlesung mit
[mm] \parallel f\parallel_{2}=\wurzel{\integral_{a}^{b} {f^{2}(x) dx}} [/mm]
definiert.

Schönen Abend noch,
grasshead


Achja:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Von der Norm zur Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 16.07.2005
Autor: Hanno

Hallo Grasshead!

Sei [mm] $\Vert\cdot\Vert$ [/mm] eine beliebige Norm auf einem unitären oder reellen Vektorraum $V$ (über [mm] $K=\IC\vee\IR$). [/mm] Dann wird durch [mm] $d(x,y)=\Vert x-y\Vert, x,y\in [/mm] V$ eine Metrik [mm] $d:V\times V\to\IR$ [/mm] induziert.

Beweis:
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $0=d(x,y)\gdw \Vert x-y\Vert=0\gdw x-y=0\gdw [/mm] x=y$.
- Für alle [mm] $x,y\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert=\vert -1\vert\Vert x-y\Vert [/mm] = [mm] \Vert y-x\Vert [/mm] = d(y,x)$.
- Für alle [mm] $x,y,z\in [/mm] V$ gilt [mm] $d(x,y)=\Vert x-y\Vert [/mm] = [mm] \Vert x-z+z-y\Vert \leq \Vert x-z\Vert [/mm] + [mm] \Vert z-y\Vert [/mm] = d(x,z)+d(z,y)$.

Damit sind alle drei Bedingungen an eine Metrik erfüllt.

In deinem Falle kannst du also einfach eine Metrik $d$ über [mm] $d(f,g)=\sqrt{\integral_{a}^{b} (f(x)-g(x))^2 dx}$ [/mm] definieren.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]