matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVon der Idee bis hin zur Lsg
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Von der Idee bis hin zur Lsg
Von der Idee bis hin zur Lsg < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Von der Idee bis hin zur Lsg: Schätzer
Status: (Frage) beantwortet Status 
Datum: 12:51 Di 15.01.2008
Autor: tillll

Aufgabe
Siehe hochgeladene Datei.

Leider kann ich für mich hier keinen Ansatz finden.

Könntet ihr mir da weiterhelfen?

Danke

Dateianhänge:
Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
        
Bezug
Von der Idee bis hin zur Lsg: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Di 15.01.2008
Autor: luis52

Hallo,

1) Die Verteilungsfunktion von [mm] $T_1$ [/mm] ist [mm] $G(y)=F^n(y)$. [/mm] Dabei ist $F$ die
Verteilungsfunktion von [mm] $X_i$. [/mm] (Ich unterstelle, dass [mm] $X_1,...,X_n$ [/mm] eine
Stichprobe ist).

2) Bestimme die Dichte $g=G'$.

3) Ermittle das $k$-te nichtzentrale Moment [mm] $\operatorname{E}[T_1^k]=\int_{-\infty}^{+\infty} y^kg(y)\,dy$. [/mm]

4) Berechne [mm] $\operatorname{Var}[T_1]=\operatorname{E}[T_1^2]-\operatorname{E}[T_1]^2$. [/mm]


vg Luis
                                  

Bezug
                
Bezug
Von der Idee bis hin zur Lsg: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:44 Mo 21.01.2008
Autor: fippo

Hallo erstmal!

Ich hätte mal noch ne Frage dazu, wozu baucht man das k-te Moment?
Damit man sieht, dass der Erwartungswert endlich ist oder wofür ist das? Kann man nicht die Varianz einfach so ausrechnen?

Viele Grüße

Bezug
                        
Bezug
Von der Idee bis hin zur Lsg: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Mo 21.01.2008
Autor: luis52

Moin fippo,

zunaechst ein [willkommenmr]

> Damit man sieht, dass der Erwartungswert endlich ist oder
> wofür ist das? Kann man nicht die Varianz einfach so
> ausrechnen?


Was meinst du mit "einfach so"? Bei meinem Vorschlag ist
[mm] $\operatorname{E}[X]$ [/mm] und [mm] $\operatorname{E}[X^2]$ [/mm] auszurechnen. Weil ich ein fauler Bursche bin,
rechne ich lieber auf einen Happs [mm] $\operatorname{E}[X^k]$ [/mm] aus und setze spaeter
nur noch $k=1$ bzw. $k=2$ ein.


vg Luis

PS: Darf ich einmal fragen, was dich in den Matheraum "gefuehrt" hat?
Google, Zufall, Empfehlung,...?    

Bezug
                                
Bezug
Von der Idee bis hin zur Lsg: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:13 Mo 21.01.2008
Autor: fippo

Ach so, ja das meinte ich auch mit "einfach so", also  [mm]\operatorname{E}[X^2][/mm] - [mm]\operatorname{E}[X]^2[/mm] ausrechnen. Danke.
Bin durch Zufall, also über Google hierhingelangt, als ich mal zu einer Aufgabe was gesucht hab, und schaue seitdem öfter mal hier rein. Heute dacht icht mir: "Meldeste Dich mal an..."


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]