matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVolumsberechnung via Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Volumsberechnung via Integral
Volumsberechnung via Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumsberechnung via Integral: Rotation um die y-Achse
Status: (Frage) beantwortet Status 
Datum: 19:16 Do 13.05.2010
Autor: Elimirion

Gegeben sind die beiden Funktionen
f(x) =  –  14 . [mm] x^2 [/mm] + 3 . x    und    g(x) = 14 . [mm] x^2 [/mm] – 2.x + 8.

Berechnen Sie das Rotationsvolumen, wenn man die Fläche um die y-Achse rotieren läßt!

Brauche hierbei bitte hilfe, da ich die Umformung auf x= nicht schaffe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Volumsberechnung via Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Do 13.05.2010
Autor: Marcel08

Hallo!



> Gegeben sind die beiden Funktionen
> f(x) =  –  14 . [mm]x^2[/mm] + 3 . x    und    g(x) = 14 . [mm]x^2[/mm] –
> 2.x + 8.



Was ist das? ich nehme an es handelt sich um die Funktionen


[mm] f(x)=-14x^{2}+3x [/mm] und [mm] g(x)=14x^{2}-2x+8 [/mm]


Ist das korrekt?



Weiter ist bei Rotation um die y-Achse V durch


[mm] V=2\pi\integral_{a}^{b}{xf(x) dx}, [/mm] mit [mm] a\in[0,b) [/mm] gegeben



> Berechnen Sie das Rotationsvolumen, wenn man die Fläche um
> die y-Achse rotieren läßt!
>  
> Brauche hierbei bitte hilfe, da ich die Umformung auf x=
> nicht schaffe!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.





Gruß, Marcel


Bezug
                
Bezug
Volumsberechnung via Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Do 13.05.2010
Autor: Elimirion

Ja, tut mir leid die Funktion wurde etwas blöd geschrieben, deine Annahmen sind fast richtig:
f(x) = – [mm] 1/4*x^2 [/mm] + 3*x
g(x) = [mm] 1/4*x^2 [/mm] – 2*x + 8

nun muss ich den eingeschlossenen Teil um die y-Achse rotieren und das Volumen berechnen. wie lauten die jeweiligen Umformungen nach x, wie lautet die gesamte Rechnung?
Danke im Vorraus!

Bezug
                        
Bezug
Volumsberechnung via Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 13.05.2010
Autor: Kimmel

Marcel hat doch schon gesagt, wie du es machen sollst. Dafür musst du den Term nicht nach x umformen.
Entweder machst du das mit einem graphischfähigen Taschenrechner oder du machst es per Hand (Aufleiten etc.)

Bezug
                                
Bezug
Volumsberechnung via Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Do 13.05.2010
Autor: Elimirion

aso ok tut mir leid, vielen Dank! Stand vorhin etwas auf der Leitung...
aber auf x umformen geht hierbei nicht oder? würd mich noch interessieren, da ich am montag Matura(abi in Österreich) hab und es dann eh auszuschließen wär wenn man es nicht auf X= umformen kann...

Bezug
        
Bezug
Volumsberechnung via Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Fr 14.05.2010
Autor: leduart

Hallo
Man kann die fkt auf ihren monotonen Stücken umkehren. Du hast keine Grenzen angegeben, und insgesamt ne ungenaue Aufgabe. Da du ne parabel hast kannst du sie nicht umkehren, nur von - unendlich zum Scheitel oder vom Scheitel bis + unendlich. dazu quadratische Ergänzung
[mm] -14x^2+3x=-14(x^2-3/14 x+(3/28)^2)+14*(3/28)^2=y [/mm]
[mm] -14(x-3/28)^2=y-14*(3/28)^2 [/mm]
ab jetzt kommst du wohl weiter.
Aber: hattet ihr nicht:
[mm] V=\pi*\integral_{a}^{b}{x^2 dy} [/mm] mit dy/dx=f'(x), dy=f'(x)dx
[mm] V=\pi*\integral_{a}^{b}{x^2 *f'(x)dx} [/mm]

Die Formel von marcel wird in der schule meist nicht behandelt.
Man kann nur monotone fkt umkehren, oder eben sie stückweise umkehren.
Gruss leduart


Bezug
                
Bezug
Volumsberechnung via Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:48 Fr 14.05.2010
Autor: Elimirion

hey! vielen dank! haben dieses Thema nicht soo ausführlich behandelt, müssen eigentlich nur um die y-Achse rotieren können indem wir eine Fkt. nach x= umformen und halt auch die Grenzen auf der y-Achse verwenden... ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]