Volumenintegral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | [Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich]
[Dateianhang nicht öffentlich] |
Ich habe die Oberfläche und die Determinante bereits bestimmt. Jetzt habe ich allerdings keine Ahnung wie ich das Volumenintegral berechnen soll. Wie fange ich da an?
ciao Mike.
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich] Anhang Nr. 2 (Typ: JPG) [nicht öffentlich] Anhang Nr. 3 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Hallo!
Die Funktionaldeterminante sieht richtig aus. Du solltest Dir anschaulich klar machen, daß die Transformation aus Aufgabe 2 das "Innere" des Torus ausschöpft, sprich, daß wenn man die Transformation [mm] $\tau$ [/mm] nennt, [mm] $T=\tau(D)$ [/mm] gilt, wobei $T$ das "Innere" des Torus bezeichne.
Damit kannst Du dann mithilfe des Transformationssatzes das Volumen von $T$ berechnen, die Funktionaldeterminante von [mm] $\tau$ [/mm] hast Du ja schon...
Grüße,
Christian
|
|
|
|
|
Jetzt habe ich aber doch noch mal eine Frage. Ich habe das Volumen mittlerweile ausgerechnet und es stimmt mit dem erwarteten Volumen eines Torus [mm] (2\pi^{2}Rr^{2}) [/mm] überein.
Ich würde aber gerne mal wissen wie ich mir anschaulich klar mache, dass die Parametertransformation den Torus voll ausschöpft. Der Gedanke liegt nahe, weil sie fast mit der Oberflächenformel aus der ersten Aufgabe übereinstimmt, bis auf die vertauschten [mm] \sin(v) [/mm] und [mm] \cos(v). [/mm] Trotzdem würde ich gerne mal wissen wie man darauf kommt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 So 26.10.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|