matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungVolumenberechung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Volumenberechung
Volumenberechung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 So 25.09.2011
Autor: ghost82

Aufgabe
Gegeben ist eine Relation durch die Gleichung x³-4x²-25y² = 0. Der Graph dieser Relation rotiert zwischen x = 4 und x = 8 um die x-Achse. Es entsteht ein glockenförmiger Hohlkörper. Wie viel Liter Fassungsvermögen hat er? 1LE = 1dm.

Hallo Leute,

ich kenne bereits die Lösung dieser Aufgabe (sie lautet: V = 45,6 l) aber ich komme einfach nicht dahinter, wie man darauf kommt. Es steht fest:
y = SQRT(-x³+4x²)/5. Allerdings weiß ich nicht wie ich die Stammfunktion von dieser Funktion bilden soll.

Vielen Dank im Voraus

Hans

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Volumenberechung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 So 25.09.2011
Autor: abakus


> Gegeben ist eine Relation durch die Gleichung
> x³-4x²-25y² = 0. Der Graph dieser Relation rotiert
> zwischen x = 4 und x = 8 um die x-Achse. Es entsteht ein
> glockenförmiger Hohlkörper. Wie viel Liter
> Fassungsvermögen hat er? 1LE = 1dm.
>  Hallo Leute,
>  
> ich kenne bereits die Lösung dieser Aufgabe (sie lautet: V
> = 45,6 l) aber ich komme einfach nicht dahinter, wie man
> darauf kommt. Es steht fest:
> y = SQRT(-x³+4x²)/5. Allerdings weiß ich nicht wie ich
> die Stammfunktion von dieser Funktion bilden soll.

Hallo,
das sollst du doch gar nicht.
Im Integral für Rotationskörpervolumen wird nicht y, sondern [mm] y^2 [/mm] benötigt, und das ist bei dir [mm] y^2=(-x^3+4x^2)/5 [/mm] .
Gruß Abakus

>  
> Vielen Dank im Voraus
>  
> Hans
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Volumenberechung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 So 25.09.2011
Autor: ghost82

Hallo Abakus,

vielen Dank für deine schnelle Antwort. Ich weiß nicht warum ich da nicht von alleine drauf gekommen bin...

Viele Grüße

Horst :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]