matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungVolumenberechnung (Vektoren)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abiturvorbereitung" - Volumenberechnung (Vektoren)
Volumenberechnung (Vektoren) < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumenberechnung (Vektoren): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mi 03.01.2007
Autor: lene233

Aufgabe
Der Schnittpunkt S der Geraden g mit der x1x3 -Ebene ist die Spitze
einer Pyramide mit dem Trapez ECDF als Grundfläche.
Bestimmen Sie das Volumen dieser Pyramide.

S(6|0|12), C(6 | 2 | 7), D(6 | −2 | 7), E(3 | 6 | 3), F(3 | -6 | 3)
und [mm] g:\vec{x}=\vektor{5\\ 2 \\ 9}+\lambda*\vektor{1 \\ -2 \\ 3} [/mm]

Hallo,

Okay, also um das Volumen einer Pyramide zu berechnen, muss man ja
[mm] V=\bruch{1}{3}*A_{G}*h [/mm]

Den Flächeninhalt der Grundfläche habe ich. Das ist 40.

Doch wie komme ich zur Höhe? Also die Höhe ist ja die Strecke von einem Punkt in der Ebene des Trapezes zum Punkt S und diese Strecke muss ja quasi senkrecht zur Ebene sein. Hab ich das so richtig? Doch wie komme ich dahin? Hätte ich eine quadratische Grundfläche, wüsste ich welcher Punkt es wäre, aber bei einem Trapez? Wie komme ich also auf h?

Danke für die Hilfe :-)
lg lene

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Volumenberechnung (Vektoren): Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mi 03.01.2007
Autor: HJKweseleit

Du suchst zunächst einen Normalen-Vektor n, der senkrecht zur Bodenfläche steht (entweder Kreuzprodukt, falls du es kennst, oder über das Skalarprodukt mit 2 Gleichungen und 3 Unbekannten). Du erhältst  [mm] k*\vektor{4 \\0\\ -3}. [/mm]

Nun fasst du diesen Vektor als Richtungsvektor der Höhengeraden auf. Diese geht durch S. Bilde die entsprechende Geradengleichung. Nun stellst du fest, wo diese Gerade die Ebene schneidet, in der die Grundfläche liegt. Abstand dieses Schnittpunktes von S ist die Pyramidenhöhe.

Bezug
                
Bezug
Volumenberechnung (Vektoren): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Mi 03.01.2007
Autor: lene233


> Du suchst zunächst einen Normalen-Vektor n, der senkrecht
> zur Bodenfläche steht (entweder Kreuzprodukt, falls du es
> kennst, oder über das Skalarprodukt mit 2 Gleichungen und 3
> Unbekannten). Du erhältst  [mm]k*\vektor{4 \\0\\ -3}.[/mm]
>  
> Nun fasst du diesen Vektor als Richtungsvektor der
> Höhengeraden auf. Diese geht durch S. Bilde die
> entsprechende Geradengleichung. Nun stellst du fest, wo
> diese Gerade die Ebene schneidet, in der die Grundfläche
> liegt. Abstand dieses Schnittpunktes von S ist die
> Pyramidenhöhe.

Okay, den Normalen-Vektor hab ich auch raus. Und wenn ich das nun weiterrechne, kriege ich für den Schnittpunkt [mm] \vektor{8,4 \\ 0 \\ 10,2}. [/mm] Also den Schnittpunkt der Geraden mit der Ebene. Ist das so richtig? Wäre nett wenn mir das jemand bestätigen könnte, möchte es wirklich einmal richtig machen um es dann sozusagen als Musterlösung zu haben. :-)

lg lene

Bezug
                        
Bezug
Volumenberechnung (Vektoren): Probe machen
Status: (Antwort) fertig Status 
Datum: 20:34 Do 04.01.2007
Autor: informix

Hallo lene233,

> > Du suchst zunächst einen Normalen-Vektor n, der senkrecht
> > zur Bodenfläche steht (entweder Kreuzprodukt, falls du es
> > kennst, oder über das Skalarprodukt mit 2 Gleichungen und 3
> > Unbekannten). Du erhältst  [mm]k*\vektor{4 \\0\\ -3}.[/mm]
>  >  
> > Nun fasst du diesen Vektor als Richtungsvektor der
> > Höhengeraden auf. Diese geht durch S. Bilde die
> > entsprechende Geradengleichung. Nun stellst du fest, wo
> > diese Gerade die Ebene schneidet, in der die Grundfläche
> > liegt. Abstand dieses Schnittpunktes von S ist die
> > Pyramidenhöhe.
>
> Okay, den Normalen-Vektor hab ich auch raus. Und wenn ich
> das nun weiterrechne, kriege ich für den Schnittpunkt
> [mm]\vektor{8,4 \\ 0 \\ 10,2}.[/mm] Also den Schnittpunkt der
> Geraden mit der Ebene. Ist das so richtig? Wäre nett wenn
> mir das jemand bestätigen könnte, möchte es wirklich einmal
> richtig machen um es dann sozusagen als Musterlösung zu
> haben. :-)

Du kannst das doch selbst prüfen: Liegt dieser Schnittpunkt tatsächlich auf Ebene und Gerade?
auf deutsch: mach' einfach die Probe! ;-)

Gruß informix

Bezug
        
Bezug
Volumenberechnung (Vektoren): Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Fr 05.01.2007
Autor: HJKweseleit

Ist richtig so, Höhe müsste nun 3 ergeben.

Bezug
                
Bezug
Volumenberechnung (Vektoren): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:08 Fr 05.01.2007
Autor: lene233

Super, danke für die Hilfe :) Langsam komm ich meiner Abivorbereitung näher ;)

lg lene

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]