matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesVolumen von Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Volumen von Menge
Volumen von Menge < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen von Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:13 Do 06.12.2012
Autor: quasimo

Aufgabe
Man berechne [mm] V_4 [/mm] (K) mit
K = { [mm] (x_1 [/mm] , [mm] x_2 [/mm] , [mm] x_3 [/mm] , [mm] x_4 [/mm] ) [mm] \in \IR^4 [/mm] : [mm] x_1^2 [/mm] + [mm] x_2^2 [/mm] + [mm] x_3^2 [/mm] + [mm] x_4^2 \le [/mm] 1 , -1/2 [mm] \le x_4 \le [/mm] 1/2 [mm] \} [/mm]

Hallo
Zuerst dachte ich, dass es sich hier um einen Normalbereich handelt. aber dabei müssten die Grenzen ja von den x-werten abhängen und das tun sie hier nicht.
Leider habe ich zu der Aufgabe keinen wirklichen Ansatz, würde mich über Hilfe freuen.

        
Bezug
Volumen von Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Do 06.12.2012
Autor: fred97


> Man berechne [mm]V_4[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(K) mit

>  K = { [mm](x_1[/mm] , [mm]x_2[/mm] , [mm]x_3[/mm] , [mm]x_4[/mm] ) [mm]\in \IR^4[/mm] : [mm]x_1^2[/mm] + [mm]x_2^2[/mm] +
> [mm]x_3^2[/mm] + [mm]x_4^2 \le[/mm] 1 , -1/2 [mm]\le x_4 \le[/mm] 1/2 [mm]\}[/mm]
>  Hallo
>  Zuerst dachte ich, dass es sich hier um einen
> Normalbereich handelt. aber dabei müssten die Grenzen ja
> von den x-werten abhängen und das tun sie hier nicht.
>  Leider habe ich zu der Aufgabe keinen wirklichen Ansatz,
> würde mich über Hilfe freuen.

Für [mm] x_4 \in [/mm] [-1/2,1/2] sei

  [mm] K(x_4):=\{(x_1,x_2,x_3) \in \IR^3: x_1^2+x_2^2+x_3^2 \le 1-x_4^2\} [/mm]

Berechne [mm] V_3(K(x_4)) [/mm]

Mit Cavalieri ist dann

  [mm] V_4(K)=\integral_{-1/2}^{1/2}{V_3(K(x_4))) dx_4} [/mm]

FRED


Bezug
                
Bezug
Volumen von Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:56 Do 06.12.2012
Autor: quasimo

Hallo,
Danke.
Sry dass ich nochmal "so schnell" nachfrage...
Aber meinst du man muss das Prinzip von Cavalieri interiert weitertreiben? ich hab dazu nämlich noch nie ein Bsp gemacht und kenne mich da leider noch nicht gut aus. Weil nun steht man ja vor dem selben problem nur ene dimension niedriger..Oder setzt du da mit geschickter Transfomation fort?

LG

Bezug
                        
Bezug
Volumen von Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 06.12.2012
Autor: fred97

$ [mm] V_3(K(x_4)) [/mm] $ ist das Volumen einer Kugel im [mm] \IR^3 [/mm]

FRED

Bezug
                                
Bezug
Volumen von Menge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Do 06.12.2012
Autor: quasimo

Okay also so ist das zu verstehen:
[mm] K_{x_4} [/mm] = [mm] \{ (x_1 , x_2 , x_3) \in \IR^3 : (x_1 , x_2 , x_3 , x_4 ) \in K\} \subseteq \IR^3 [/mm]

[mm] V_4 [/mm] (K) = [mm] \int_{-1/2}^{1/2} V_3 (K_{x_4} [/mm] ) [mm] dx_4 [/mm]


Wir hatten in der vorlesung: [mm] V_n (B_R^n) [/mm] = [mm] R^n V_n (B_1^n) [/mm]
[mm] B_R^n [/mm] .. Kugel mit radius R in [mm] \IR^n [/mm]


[mm] V_4 [/mm] (K) = [mm] \int_{-1/2}^{1/2} V_3 (K_{x_4} [/mm] ) [mm] dx_4 [/mm] = [mm] \int_{-1/2}^{1/2} \sqrt{1-x_4^2}^3 V_{3} (B_1^{3}) dx_4 [/mm]  = [mm] V_{3} (B_1^{3}) [/mm] 2* [mm] \int_{0}^{1/2} \sqrt{1-x_4^2}^3 dx_4 [/mm]  
Transformation [mm] x_4 [/mm] = sin [mm] \phi, [/mm] d [mm] x_4 [/mm] =   cos [mm] \phi [/mm] d [mm] \phi [/mm]
=> [mm] \int_0^{1/2} \sqrt{1-x_4^2}^3 dx_4 [/mm]   = [mm] \int_0^{\pi/6} cos^4 \phi [/mm] d [mm] \pi [/mm]
Nun weiß ich nicht weiter, wir haben zwar für das eine rekursion mal hergeleitet aber zwischen den grenzen 0 und [mm] \pi/2 [/mm] ..
Ich glaub ich mache das falsch...

LG

Bezug
                                        
Bezug
Volumen von Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 00:40 Fr 07.12.2012
Autor: leduart

Hallo
partielle Integration cosx=u' cos^3x=v
später verwenden 2sinx*cosx=sin2x

gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]