matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenVolumen singulärer Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Volumen singulärer Körper
Volumen singulärer Körper < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen singulärer Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 So 13.01.2013
Autor: Unknown-Person

Ich möchte das Volumen eines unendlich dünnen, unendlich langen Drahtes berechnen. Zur Vereinfachung lege ich den Draht auf die z-Achse (damit nachhergehende Rechnungen einfacher fallen, die hier aber nicht diskutiert werden müssen/sollen).
Also das Volumen eines Körpers:

[mm] V=\integral_{V}{f(r,\phi,z)dV}=\integral \integral \integral{f(r,\phi,z)rdzdrd\phi} [/mm]

Meinen Draht in Zylinderkoordinaten kann ich folgendermaßen ausdrücken:

[mm] f(r)=\delta(r) [/mm]

Dies (und die Grenzen) kann ich in obige Gleichung einsetzen:


[mm] V &=& \limes_{R\rightarrow 0} \limes_{Z\rightarrow\infty}\integral_{0}^{2\pi} \integral_{0}^{R} \integral_{-Z}^{Z}\delta(r)rdzdrd\phi} \\ &=& \limes_{R\rightarrow 0}\integral_{0}^{2\pi} \integral_{0}^{R}\delta(r)r[\infty+\infty]drd\phi} [/mm]

Was mache ich falsch? Danke für Hilfe!

        
Bezug
Volumen singulärer Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 So 13.01.2013
Autor: leduart

Hallo
das integrieren der Deltafunktion verschleiert nur, dass du
[mm] \limes_{z\rightarrow\infty} \limes_{r\rightarrow 0}\pi*r^2*z [/mm] berechnen willst .
[mm] \integral{ \delta(r)*r dr} [/mm] =1 unabhaengig von den Grenzen.
Wenn du dir dagegen vorstellst, dass du eine [mm] m^3 [/mm] Stahl immer duenner walzt bleibt es 1 [mm] m^3 [/mm] egal wie duenn du ihn walzt. wenn dumit [mm] 100m^3 [/mm] anfaengst bleiben es [mm] 100m^3 [/mm] fuer z gegen [mm] \infty. [/mm] daraus siehst du, dass daskeine wohldefinierte Aufgabe ist.
Zusatz: du kannst ja ausserdem ein f(z) dazu fuegen,was die dicke beschreibt und gegen unendlich schnell genug abfaellt.
auch dannerhaltst du ein endliches integral und dein Draht wird beliebig duenn.

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]