matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieVolumen eines Zylinders
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Volumen eines Zylinders
Volumen eines Zylinders < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Volumen eines Zylinders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 Sa 08.11.2008
Autor: Somebodytoldme

Aufgabe
Hohlraum wird beschrieben durch Rotation der Funktion: [mm] y=e^{2x-1} [/mm] um die y-Achse

Welches Volumen wird dabei eingeschlossen, wenn die Integrationsgrenzen [mm] y_{1}=1 [/mm] und [mm] y_{2}=10 [/mm] gelten.


Nach Bildung der Umkehrfunktion: [mm] y=\bruch{1}{2}+\bruch{1}{2}ln(x) [/mm] wollte ich den Flächeninhalt so berechnen: A= [mm] \pi \integral_{1}^{10}{(\bruch{1}{2}+\bruch{1}{2}ln(x))^{2} dx} [/mm] berechnen, habe mit der Auflösung des INtegrals jedoch Schwierigkeiten.

Viele Dank für schnelle Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Volumen eines Zylinders: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Sa 08.11.2008
Autor: weduwe


> Hohlraum wird beschrieben durch Rotation der Funktion:
> [mm]y=e^{2x-1}[/mm] um die y-Achse
>
> Welches Volumen wird dabei eingeschlossen, wenn die
> Integrationsgrenzen [mm]y_{1}=1[/mm] und [mm]y_{2}=10[/mm] gelten.
>  
>
> Nach Bildung der Umkehrfunktion:
> [mm]y=\bruch{1}{2}+\bruch{1}{2}ln(x)[/mm] wollte ich den
> Flächeninhalt so berechnen: A= [mm]\pi \integral_{1}^{10}{(\bruch{1}{2}+\bruch{1}{2}ln(x))^{2} dx}[/mm]
> berechnen, habe mit der Auflösung des INtegrals jedoch
> Schwierigkeiten.
>  
> Viele Dank für schnelle Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


ausquadrieren und partielle integration (des 1. faktors) führt doch sofort zum ziel


[mm] \integral_{}^{}{ln^2y dy}=y\cdot ln^2y-2\integral_{}^{}{lny dy} [/mm]

und schon bist du (fast) fertig, da sich der 2.teil nun vertschüßt


Bezug
                
Bezug
Volumen eines Zylinders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 So 09.11.2008
Autor: Somebodytoldme

Mit den INtegralen komme ich überhaupt nicht klar. kann das vielleicht mal jemand erklärend vorrechnen. Ich komme immer nur auf volumen die nicht richtig sind.

Wie löse ich denn das INtegral:


[mm] \integral_{1}^{10}{(\bruch{1}{2}ln(x)+\bruch{1}{2})^{2}dx} [/mm]

richtig auf?

Vielen Dank für die Hilfe

Somebodytoldme

Bezug
                        
Bezug
Volumen eines Zylinders: Tipp beachten
Status: (Antwort) fertig Status 
Datum: 10:00 So 09.11.2008
Autor: Loddar

Hallo Somebodytoldme!


Warum wendest Du den o.g. Tipp nicht an und siehst, wie weit Du damit kommst?

[mm] $$\integral{\left[\bruch{1}{2}*\ln(x)+\bruch{1}{2}\right]^{2} \ dx}$$ [/mm]
$$= \ [mm] \bruch{1}{4}*\integral{\left[\ln(x)+1\right]^{2} \ dx}$$ [/mm]
$$= \ [mm] \bruch{1}{4}*\integral{\ln^2(x)+2*\ln(x)+1 \ dx}$$ [/mm]
$$= \ [mm] \bruch{1}{4}*\integral{\ln(x)*\ln(x) \ dx} [/mm] \ + \ [mm] \bruch{1}{2}*\integral{1*\ln(x) \ dx} [/mm] \ + \ [mm] \bruch{1}{4}*\integral{1 \ dx}$$ [/mm]

Und nun bei den ersten beiden Integralen jeweils mit partieller Integration weiter.


Gruß
Loddar


Bezug
                                
Bezug
Volumen eines Zylinders: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:49 So 09.11.2008
Autor: weduwe


> Hallo Somebodytoldme!
>  
>
> Warum wendest Du den o.g. Tipp nicht an und siehst, wie
> weit Du damit kommst?
>  
> [mm]\integral{\left[\bruch{1}{2}*\ln(x)+\bruch{1}{2}\right]^{2} \ dx}[/mm]
>  
> [mm]= \ \bruch{1}{4}*\integral{\left[\ln(x)+1\right]^{2} \ dx}[/mm]
>  
> [mm]= \ \bruch{1}{4}*\integral{\ln^2(x)+2*\ln(x)+1 \ dx}[/mm]
>  [mm]= \ \bruch{1}{4}*\integral{\ln(x)*\ln(x) \ dx} \ + \ \bruch{1}{2}*\integral{1*\ln(x) \ dx} \ + \ \bruch{1}{4}*\integral{1 \ dx}[/mm]
>  
> Und nun bei den ersten beiden Integralen jeweils mit
> partieller Integration weiter.
>  
>
> Gruß
>  Loddar
>  


der 2. integrand fällt nach der 1. partiellen integration des ersten integrals weg, mit dem braucht man sich also gar nicht mehr zu plagen




Bezug
                                        
Bezug
Volumen eines Zylinders: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:46 So 09.11.2008
Autor: Somebodytoldme

Ich komm aber trotzdem nicht auf das gesuchte ergebnis von [mm] V_{y}\approx48.73 [/mm] könntest du das vielleicht nochmal überprüfen ob das so stimmt?

Ich werd echt verrückt ...

Vielen Dank

Bezug
                                                
Bezug
Volumen eines Zylinders: vorrechnen!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 So 09.11.2008
Autor: Loddar

Hallo Somebodytoldme!


Dann poste mal, wie Du auf Dein Ergebnis kommst mit den entsprechenden Zwischenschritten.


Gruß
Loddar


Bezug
                                                        
Bezug
Volumen eines Zylinders: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 So 09.11.2008
Autor: Somebodytoldme

hab die integrale aufgeteilt:

[mm] 1.)\bruch{1}{4} \integral_{1}^{10}{ln(x) ln(x) dx}= \bruch{1}{4} [/mm] ( (x ln(x) ln(x) - 2 ln(x)+2x) [mm] \approx [/mm] 16.60345

2.) [mm] \bruch{1}{2}\integral_{1}^{10}{ln(x) dx}= \bruch{1}{2} [/mm] (x ln(x)-x) [mm] \approx [/mm] 7.0129

3.) [mm] \integral_{1}^{10}{ \bruch{1}{4} dx}\approx [/mm] 2.25

so richtig?

danke, grüße

Bezug
                                                                
Bezug
Volumen eines Zylinders: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 So 09.11.2008
Autor: weduwe

ich hätte zu bieten:

[mm]V=\frac{\pi}{4}\integral_{1}^{10}{(ln^2y+2lny+1) dy}=\frac{\pi}{4}|y\cdot ln^2y+y|^{10}_1=\frac{\pi}{4}(10\cdot ln^210+9)\approx 48.71[/mm]

Bezug
                                                
Bezug
Volumen eines Zylinders: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 So 09.11.2008
Autor: Somebodytoldme

die obige mitteilung sollte eine frage werden... Sorry

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]